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Introduction

\"l‘here are two categories of magnetic anomaiies associated with the c¢:ean. Primary
anomalies are induced directly by interaction of ocean flow with the geomagnetic field, or
induced by ionospheric fluctuations, or are the expression of the rem:.iant magnetization of the
ocean floor rocks. Secondary anomalies are created by interaction of slectric current flow in the
ocean, with irregularities of the electrical conductivity distribution withiii the ocean, or with
irregularities of the boundarizs of the ocean (seafloor ridges and troughs or ocean surface
waves). Our focus in this report is on secondary anomalies, although some attention is paid to ‘
primary effects for completeness... .

Large scale and relatively intense etectric currents in the ocean are mainly induced by
ionospheric ﬂuctuutidns. The primary magnetic fields and induced electric fields in the ocean
both have "red" continuum spectra in the frequency range from one cycle per day upward,
which is caused by the normal unrest of the ionosphere and by bay disturbances and the princi-
pal part of magnetic storms. In addition, there is a line spectrum consisting of harmonics of 1
cpd: the solar daily variation. Typical amplitudes of electric fields induced in the ocean are of
order 1 u ¥/m, although lurger values can be found in a magnetic storm.

Sy

The spatial scale of the anomalous conductivity structures within the ocean which we
shall treat are relatively small; for ocean surface waves the wavclength is typically a few. hun.
dred meters, and a comparable scale is appropriate for ocean structures such as internal waves
and frontal systems. Ocean bottom hills, ridges, and troughs are typically of a few to a few tens
of kilomesters in size. As a consequence of the slow variation of the primary electric field in the
wcean and the small spatial scale of the conductivity unomalies, the magnetic Reynold's
number, Rwwuco LD, applicable to the anomalous secondary flelds, is small. For example, if -
w, the oscillation frequency, is 107*sec™!, the conductivity of seaw.aler o i3 3 S/m, and the
horizontal and vertical scales L and D are 40 krﬁ and 4 km respectively, then R=0.06. From
this rough calculation it is apparent that time variations of the primary fields do not lead to
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appreciabie self-inductance effects in the secondary ficlds. in the subsequent calculations we

have neglected the self-inductance of secondary fields entirely, thus treating them as though

they were caused by a perfectly static primary field. This approximation, valid for these secon-

dary fields, is, of course, entirely inappropriate for the treatment of the primary fields, because

. ' their large horizontal scale ordinarily leads to magnetic Reynold's numbers of order unity or
greater.
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Chapter I

Magnetic Anomalies Induced by Surface Waves

B .- oe oy

1. Introduction

Here we cansider magnetic anomalies associated with waves of small amplitude mov-
ing on the surface of a deep ocean. There are two principal effects in this category; that due to B -
interaction of the surface waves with & uniform electrical current flow within the ocean (such as '
! might be induced by electrical activity in the ionosphere), and that due to wave-associated sea-
water movement through the Earth’s magnetic fleld. Section 2 of this chapter deals with the ‘
magnetic field generated by the uniform current flow alone, and section 3 derives the perturb- '
ing magnetic effects of the interaction of a surface wave with this flow. Section 4 is a note in
passing that the mathematics in sections 2 and 3 is also applicable to the calculation of magnetic
anomalies produced by a special class of bottom features. Section S discusses the interaction of

"
f;:’ , _ the water motions that accompany surface waves with the Earth’s magnetic field, summarizing ¢
. previous work by others, Section 6 covers the subject of the gradients of the magnetic field -
o : vector components generated by the mechanisms explored in sections 2, 3, and 5. Finally, sec- ‘

8 tion 7 puts some numbers into the field expressions derived in sections 2, 3, and § in order to
.4 give some idea of the relative magnitudes of the different magnetic effects under various cir- \

?g cumstances. The treatment is as general as is consistent with the small amplitude wave,‘deep '

k uniform ocean model, and should lend itself to expansion to consider the effects of ocean bot-
i; - tom features of small aspect, should this be desired.
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2. Uniform horlzontal electric field in a flat-sucfaced ocean

One of the consequences of magnetic field fluctuations within the volume of the
ocean, such as may result from the solar daily variation of the Earth's magnetic field or from
disturbances in the upper atmosphere, is the generation of an electric potential gradient within
the ocean and the corresponding induction: of an electrical current flow; for example, the solar
daily variation typically generates a slowly oscillating electric field throughout the deep sea with
an amplitude that is typically a large fraction of a microvolt per meter, and magnetic storms in
the upper atmosphere can give rise to electric fields several times larger. Magnetic fluctuations
of this sort are for the most part of a sufiiciently hyw frequency that the magnetic induction
number wuo'i? (where o is the frequency of fluctuation, s and o are the magnetic permeability

and electrical conductivity respectively of the material under consideration, in this case seawa- '

ter, and 1 is the length scale of the induction effect in question, in this case the depth of the
ocean) is a great deal less ti'mn unity, indicating that the magnetic fluctuations penetrate
through the ocean virtually without resistance; as a result of this, in a flat-bottomed ocean the
induced electric field will be essentially uniform with ‘depth. Also, and, in this context, perhaps
more to the point, the time scale of these magnetic fleld fluctuations is typically sufficiently
large (with periods on the order of an hour and up) compared to that of water wave effects on
the ocean surface that the electric fields induced by them can, for our present purposes, be con-
sidered static to excellent approximation. Accordingly, we assume a horizontal, spatially uni-
form, temporally static electric field £o% within the volume of the ocean, and an induced electr-
ical current density distribution J such that '

" Tmal)Es | @

where o (z) is the electrical conductivity distribution of the ocean, assumed here to be a func-
tion of depth only. In the following work dealing with the magnetic effects resulting from this
induced electrical current distribution, deviation of the current density from J as given by (2.1)
will be considered as due to the perturbing effects of variations of the upper and/or lower boun-
daries of the ocean, and for a flat-surfaced, flat-bottomed ocean shouid be completely absent.

We consider first the magnetic field within and above a flat-surfaced, flat-bottomed
ocean of depth D resulting from the induced electrical current density distributioni J as given
by (2.1). If this current distribution is viewed as the limit of a large number of parallel fine
threads of electrical current, then one sees that the resultant magnetic field can have no com-
ponent in the X direction, and consideration of the symmetry of the problem in the § direction
shows that the field can have no 2 component, where 2 points vertically upward. This field can
be deduced by use of the integral form of Ampere's law,




v S B@=po [ Thas | 2.2)

together with some symmetry arguments, and the total magnetic field may then be inferred by
adding this component to the inducing field, which can be derived by other meaas,

: We start with a rectangular path of integration within a plane perpendicular to %, its
top and bottom legs parallel to § and above the surface and below the bottom respectively.
; From the above arguments we have that the induced magnetic induction vector B; is every-.
' where paralle! to , and from considerations of symmetry we have taat the fields above the
: ocean surface and beneath the bottom should have the same magnitude but opposite directions,
' Since the verticai legs of the rectangle contribute nothing to the integral, we therefore have for
" the magnetic induction everywhere beneath the ocean floor

oy o |
5;-—2—291;":(:)& . | (2.3)

with the induced magnetic induction everywhere above the ocean surface being just the nega-
tive of this, We now place the lower leg of the rectangle exactly at the ocsan floor, and move
the upper leg down below the surface to a depth a distance z; above the bottom; given (2.3) for
the magnetic induction along the lower leg, we have from (2.2) the magnetic induction along
the upper leg '

B;(zo)......‘f.”i. l_fcr(ﬂdz—}a'(ﬁdz '(2.4)

0
2 %

If the electrical conductivity of the seawater is constant over the depth of the ocean with a
value oq, then this reduces to

| BG@)=~%ueJoDy , 2>D | (2.5)
Bi@) = +hpodo D=2209 , 0<z<D (2.6)
BG@)=+YugJoDP , 2<0 ‘ 2.7

where |
Jo= ooEq | : (2.8

and z=0 is at the ocean floor. Use of the differential form of Ampere’s law

ny-uﬂ' A - (2.9)
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N (neglecting displacement currents, a valid approximation in this context) confirms this work,

For the total magnetic induction By at the ocean floor we have

S Awpelag,

vl

¥
1

‘=

(2.10)

TSI

TR

where Z¢ is the E mode impedance of the Earth, a corn,.2x functivn of frequency that is

dependent in ideal circumstances only on the distribution of electrical coanductivity below the

. ocean floor (see for example Cox et al., 1970); Z; is,technically, the rauio at the Earth's surface

: between the horizontal component of an oscillating electric field and the horizontal transverse
component of the magnetic field that appears in response to it, aﬁd on grounds of symmetry we

_ have in this case that this total magnetic induction 57 must be perpendicular to the induced . -

5 electric fleld Eqk (as is usually the case in general), yielding the field direction indicated by

; (2.11) (arguments of scaling und symmetry suggest that if By has a vertical component then it

must be much smaller in magnitude than the horizontal component). At a frequency of one

cycle per hour, in a typical measurement Z; might have a magnitude of 0.00025 () and a phase

of about 45°. By is the sum of B} and Bf, the slowly fluctuating magnetic induction field that t

originally induced 5B}, and by the previous argument relating to the magnetic induction number K

we have that 5 must be essentially uniform in space throughout the ocean and for some dis-

tance above the ocean surface; accordingly, we get By over this altitude range simply by adding

to B; whatever is necessary to bring its value at the ocean floor up to that given by (2.10).

Thus, By comes to

RS T NIDE

TRy T T B

- W - -

25 SRS R

- I i
; By = poEoy { 7 /:_ra'(z)é } : (2.11) :
gs and the expression for By is :.
: E;'(Zo) - #0505' [ "zl; - I(Zo) ] N (2.12)
where 3
; : : () = '!QO'(Z)JZ ,» 0€20€D (2.13) l
; . i
1‘ and :
S L) =Z(D) , 2>D . (2.14) 5

ot § 1 R

For an ocean 4 kilometers deep, for an inducing field oscillating at one cycle per hour, £(D) is
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3. 'The perterbing effect of shallow waves at the surface
We now suppose the surface to be described by the expression
L= a expliky®) e~let | (3.1)

where { is the height of the surface above: its mean level, a is the wave amplitude, ky is the
horizontal component of the wavevector, which for convenience we will express in the form

ki = k (cos@, sing, 0) , (3.2)

where k is real and positive, ¥ is the position vector, X=(x y,z), and w is the angular fre-

quency of the wave. In practical applications the surface is considered to be given by either the

real or imaginary part of expression (3.1), whichever is more convenient, and the resultant
magnetic field is determined by taking the same part of the complex field expression derived
from (3.1).

In order to meet the boundary condition that J at the surface should have no com-
ponent normal to the sutface, it is necessary lo add a perturbation term to the unifcrm current

distribution initially assumed to exist beneath the surface. Furthermore, since the. current dis-

tribution within the ocean is ultimately induced by whatever electric field is presoat,
JmoFE , (3.3)

where E is the electric field and o is the electrical conductivity of seawater (which may be con-
sidered for our purposes to be a constant, as the depth range within which the surface waves
exert a noticeable electrical influence is too thin to exhibit a significant conductivity variation),
J may be viewed as the gradient of a scalar function;

J=vVe . _ | (3.4)

If we make the reasonable essumption that separation of electrical charge within the body of the
ocean is negligible for all w of interest, we also have

vI=0 , (3.5)
which with (3.4) implies

Vig=0 . (3.6

The only solutions to (3.6) that can conveniently be reconciled with (3.1) have the
form . .
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5;| ' 7 t
‘” \ . 4
S ¢ =14 ep(&3)+ B ep(y®) ) e 3.7 '
e o .
{ ' where
:
D : k)= k (cosé, sing, ~i) (3.8
[ L
B ? ~and Z
& [ ¢
ﬂ : Ka= k (cos0, sing, 1) ; (3.9) ;
4 ‘ the first term of (3.7) dar.ps exponentially downward, and the second term grows exponentially =
o downward. For an ocean of finite and uniform depth the coefliciénts A and B can be related by :
'- T use of the boundary condition at the ocean floor that the electrical current flow at this interface .
rq . has no vertical component, tut as long as the order of magnitude of the wavelength of the sur- v :
z : ' face wave is less than that of the depth of the ocean, which for our purposes will generally be .
the case, the second term of (3.7) is negligible compared to the first; accordingly, to simplify
; the calculations we will henceforth assume that B=0 and take k=K, giving a current distribu-
| {i " tion beneath the surface of . 1
.‘\ l R
A Tdo%+F Ud ep(BR) ot (3.10)
1
W
' K = k (cose, sing, —i) . (3.11) |
X ' ' )
. The value of A may be determined from the boundary condition at the surface that ;
AN | 7T=0 atzef , ' (3.12) '
R where 7 is a vector normal to the surface; such a vector is
W X . i
l‘| . . .
o - -8 _& ]
¥ A 7 [ %' "3y l] . : (3.13) :

: If (3.10) is substituted into (3.12) and terms of second and higher orders in (ke) are discarded,
y i one gets ; '

Y A = laJycos0 .14
%; under the condition that
W
R lka|l << 1 . (3.15)

.I.

! This gives from (3.10) !
"\ s
() T Jolk=acosd exp(®) e §) . (3.16) !
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»‘. i general, the magnetic field B () due to an electrical current distribution within a
- volume V is given by
o . Mo T6) % Re-3) ’
R ot - R ol ML 7 3.17
‘k‘ ‘ (Reitz and Miiford, 1967, p.154); for this problem this integral takes the form
A o - T&) x (@g=%)
! (Ry) = ‘&9" j 7. '
S Bty - 22 idx idv J& =G (3.18)
B , where J/(2) is as given by (3.16). It is convenient for purposes of calculation to express B as
. " the sum of By and By,
‘ ‘; ) ; wt
3 Bldg) = By o) + By () ' (3.19
s " ! - .
5‘-‘ N = where By is tho fleld due to the purt of the current distribution that is between z=-D and z=0
e o ‘ . and B is the fcld due to the part of the current distribution between z=0 and z={, and to
o B break By dow into By and Bip,
l‘h
', Ep' (o) = Eyu ) + Eyp &) (3.20)

! whete Byy is due to the uniform component of the current distribution, Jo%, and Byp is due to
o ’ the peiturbation thereon which constitutes remainder of the distribution, Hyu has already been

N determined in section 2.
h' ‘ Byp is given by
b Brttp=L [a | _f'dz | (3.21)
i = L&Y ' '
o
k. \ (cosd, sind, =) x (R=%y) . -
b L exp (k%)
\ @~/ P
".’
4 C = poloa k cosd % | (3.22)
"1 where we have simplified the integration by extending the lower limit of integration from z=-D '
” down to z=—o0; provided that the wavelength of the surface wave is somewhat less than the
K: depth of the ocean, as has already been assumed, the error introduced by this extension should
) be regligible. Making the substitutions
o
u = (x—x9) cosd + (y—yp) sind (3.23)
4 . ,
) v = (v~yo) cosd — (x=xo) sind (3.24) -
R .
I‘ i
T
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Y
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: ‘;, 9
Ao
) Ug = Xg C080 + yo Sind ' (3.26)
Z_:EZ B = % cosd + § sind (3.27)
5] :
" 1 R .
by P = § cow — & sind , (3.28)
| .
. turns (3.21) into
R C ¢ 0
% ; Bip ) = £ ’ f du f dv f dw . (3.29)
% ‘ X (f+2)v + 9 (w=iu) e g=kw
; (ul-b-v’q-w’)’/ :
N
i-‘ ' where z; is the altitude of the observation point relative to the ocean surface. The term in
X f (#+2) does not contribute to the integral, as it gives an integrand antisymmetric in v. Further
‘ § C reduction of the integral is aided by the identity
» 1
- on T & 2 ,
SN (Grobner, sec. 213, eq. 1, p. 34); use of this identity in the integration over v gives from
) : .
' (3.29)
\ ' . .
A W thw ke ] »
W Ce e ey gkv
| , Bp = :l; du _'[; dw £ (3.31)

which yields easily to contour integration in u (over the upper half plarie) followed by standard
Integration in w, to give

« P tiat
X AP P

1

'J r Byp ) = Y po Joa cosd '™ el gt (3.32)
- j ' x (—sind, cosd, 0)
' In the computation of By the pertuitation part of the current distribution contributes
: 1 only in second order in (ka), and thus can be ignored, leaving only the uniform component of
b
% " v the current distribution to be considered. The appropriate intr:gral expression is then
Jo P, T £ x (xg-3)
2 Bs (o) = 220 [ [ay [ar =202 (3.33)
e s 4n .-[., J.: o [®exP ]
N
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or .
Bs (xp) - ﬁ:—"{ﬂ j'dx Tdy Idz (3.34)

o 10 =20, =yl .
R~ol? '

The small range of integration of z in this integral suggests a Taylor expansion of the integrand
over this variable; if this is done, only the first term (the constant term) contributes to By in
first order in ka. Doing this, we get - '

B ) = - ‘-‘i—r{ﬂ Idx _j:«y 3.35)

)
{G=x)™ (—yo) 226 )¥

Using the expression (3.1) for { and making the variable changes (3.23), (3.24), and (3.26)
gives from this

7 (&)

. balg —iwt -
Bey - Kelode €% £, (4 (3.3

L

(0, zo, u Sind+v cosd)
W) ¢

from which the integration over v gives

33 X)) = 3.37

_#odoa o g-iut J’- (b, 2o, 4 Sing) e
2 Y (u+izg) (u—tz¢g) !

which yields to contour integration in u, closing the contour in the upper half pléne, lo give
Fs (?o) -l Ho Jo a ¢M° e-““"' e ivt ?(Zo) (3.38)

- 0,1,is5n8) . 2>0
“o)=1 (0, -1,/ sing) , z0< 0 . (3.39)

Combining this with (3.31) gives for By, the field due to the perturbing effects of the
surface wave,

By @) =~ hpgJoa e0 g1l ot €(z0) (3.40)
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> 1

o :

"

: sind (cos@, sind, i) » 20> 0

2 S - \cos@, sing,

pe TCo) = ging (cosd, sing, i) — (0,2,0) , z,< 0 , 341

to which the field computed in section 2 for a uniform current. distribution within a flat-surfaced
. ocean must be added to give the complete magnetic field to first order in (ka). As a check,
:_ (3.40) and (3.41) have been verified by use of the curl expression (2.5). Note, as a special
! case, that when the wave crests are perpendicular to the % directfon there is no wave-induced
contribution to the field above the surface. Thise is reasonable on physical grounds, as in this
i , case the total vertically integrated horizontal electric current flow within the ocean is unchanged
; from the flat surface condition and unchanzlni with position everywhere in the ocean; there-
, 4 fore, by Ampere’s law, the difference AB between the magnitudes of the horizontal component ;
0 ‘ of the magnetic field above the ocean surface and beneath the ocean floor is unchanged from
) the flat ocean case, and considerations of symmetry rule out a vertical field component for this -
geometry. By contrast, when the wave crests are parallel to 2 there is more total electrical
' current flow through the water beneath a crest than beneath an adjacent trough, and hence AB
;» " is variable from place to place.
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\ - 4. Application to fields induced by bottom topography

The work in the previous section can be applied, with minor modifications, to the cal-
culation of magnetic anomalies produced by certain types of bottom features. Any reasonably
smooth bottom feature can be described by a series of terms of the form of (3.1) with w set to’
2ero, and the problem is then reduced to that of the previous section turned upside-down. The
usefulness of this approach is limited in that the lateral dimension of the feature to be investi-
gated must be somewhat greater than its vertical dimension in order to meet the small-scale
approximation (3.15) used in developing the mathematics. This application is discussed in
detail in section 6 of chapter 2. .

'. In the event tha. .2 lateral dimension of the feature is on the order of the depth of -
the ocean, both terms of the general solution (3.7) for the electrical current potential, that

: which increases exponentially with depth and that which decreases exponentially with depth,

: must be ysed, and the stibsequent steps of the derivation altered to suit. Since the vertical

: scale of the bottom feature will generally be much greater than the amplitudes of whatever
waves there are on the ocean surface, it is a reasonable simplifying assumption in this develop-
ment to consider the ocean surface to be compleiely flat.
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- s §. Surface waves moving through the Earth's mnnetlc field ‘

A 3 Surface waves will be accompanied by motion of the seawater beneath the surface, and
;? .' the movement of charge-carrying fluid through the Earth’s magnetic field will result in an
' induced electrical current distribution; this current distribution will in turn give rise to a mag-
o netic field modifying the Earth’s field. This subject has been covered by Crews and Futterman
. ' (1962), Warburton and Caminiti (1964), and Wuaver (1965), but for the sake of completeness
:q; } an abbreviated derivation of the effect is given here in the mathematical framework developed
%‘,‘ oo in sections 2 and 3 of this chapter. '
% The current distribution induced by the water movemerit is given by
. : TmovxF+1 , (RV
P : '
' l where o is the electrical conductivity of the water, taken here to be constant, ¥ is the water
;J' o velocity distribution, and F' is the Earth's magnetic field, which may be taken to be locally uni-
! form. Jc is & correction term whose purpose is to insure that the boundary condition is met.that

. . o " there bo no electrical current flow through the surface. If we assume the water flow to be irro-
'?'l ‘ . tationa! (for a discussion of the validity of this assumption see Lamb, 1945, sec. 33, pp. 35-37),
"{ ' then the condition
e
;- : vI=0 ' (5.2)
: ' is automatically satisfied provided that the same condition holds for ¥ _
0 . R
Y VT =V (PxF) + v (5.3)
! | - o {F-(Vx7)-7-(@xF) + VT
b .
¥ . .
i , -0 .,

Another consequence of the assumption of irrotational water flow is that the velocity field may
be viewed as the gradient of a scaler function, and if we ualso supposz that the seawater is
incompressible, which is safe enough, we have

VV=0 . ' (5.4)

If ¢ is the scular function, then
V= Ve S ‘ (5.5) i
V=0 . (5.6)

The solution of (5.6) that most conveniently fits with the surface equation (3.1) has the form

B ST I N ORIT St ¢ AN LS

555 N

A T A T Rt R, (R CL L (LT T LYy
- ‘\LAL ! M\’Y‘ -'TU ..’5’;4.:5“%'"-:1" My ." ..' A .? .“ 1 _‘l | i .

YRR e WY TR
\
& I-'.\i _




AR LR

Ly
B

E%

_;»»J)’“L‘;

i
A
v.“
)
1 - .o Y|
\

@y
ROL
4
+
4
¥
DA
vt
j
Al
J
!
'.
}n

SR RS

0z

i
e

o g 2

AMELITFIN LN & .. .8 Ty 0. W 0 ¥ ¢ 0w w.w e w & " ow o« R A L T -

14

¢%) = A exp(k®) e'v (5.7
where % is as given in (3.11), and if we make the constraint that

-a—‘--v,-—ai at z={

ot a9z ' - (5.8)

an approximation that is correct to first order in (ka), we find that

A =i l% a . | | (5.9
V = (cosd, sind, =i) @ a exp (ikR) e | (5.10)
7is tézen given by |
Y=o wa explE®) e (cosh, sing, —-l) xF | (5.11)
+% . |

J will have zero divergence as required if it is proportional to %, and the boundary condition
that there be no electrical current flow through the surface, given by (3.12), is satisfied to first
order in (ka) if J,=0; the result is '

Jo = =1 (cos, sinf, 1) o & a {(cos9, sind, —1) x F}, ' | (5.12)
X exp (KR et
Tmaway (8ing,--cosd, 0) exp (KR) e/t (5.13)

X = i (cosd, sind,—1)-F. . : (5.14)

The magnetic field arising from this current distribution mayl be found by inserting
(5.13) into (3.18). As in section 3, we find it convenient to divide the integral into an integral
over the volume below z=0 and an integral covering the complementary region hetween z=0
and the surface at z={; upon doing this, we find by inspection that the second integral contri-
butes nothing below the second order in (ka) tn the mugnetic field, leaving only the first
integral to evaluate. Making the -substitutions (3.23) ihrough (3.26) and simplifying the
integration by assuming infinite depth for the ocean as in section 3 gives the inteyral

Bap--L Jur far zdw (5.15)
- = 0

(W cosf, w Sim) “) ki p=kw
(u2+v1+w2)3/2 e e
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Cmugoway o oMo gmimt (5.16)
Integration over v gives from this
B =—C [au [ B0 I00) pou o, (5.17)
- ]o .

froni which contour integration in u (closing the contour in the upper half plane) followed by
integration over w gives

B®R) =— Vhuoo ax ™ el gmiur T(zo) . : (5.18)
l-—-l (cos@, sind, 1) _ 2> 0

7(20)" 2<0 . (5.19)
-I (cos@, sim 1) + 2z (cos, sind, =1)

‘This has been verified with the curl expression (2.5).'
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. 6. Gradients of the field components

. Above the surface, the field derived in section 2 for a uniform electric current flow. A |
¢ ' given by (2.2) through (2.4), is completely uniform itself, and therefore has a zero gradient.

Below water, though, the field magnitude decreases linearly with increasing depth; the _gradient
of the y-component of the fleld, the only nonzero component, is given by

I

VB, =—~pgdod . ' (6.1)

The calculation of the tgm&r gradients of the magnetic field derived in section 3, and

P g oS e
fw—‘f

o
f
'%;é S given by (3.37) and (3.38), is made easy by the fact that all. of the field components have the
WA, ) N '
' same spatial dependence,
Wty . 1 '
b |
; @) =ecpER) , 6.2)
‘ where K is given by (3.8) where z<0 and by (3.9) where z>0; the gradient of this expression |
':’ . isgivenby , | .
Vi@ =iErE (6.3)

, where & is .deﬁned us above, Accordingly, the appropriate component gradients may be derived’
f just by multiplying the individual fleld components by ik with k¥ given by

) ?H’JE".Q;'NQ. e

oL

k (coso,si0, 1) ,2>0
F-{k (cos0, sind, ~i) , 2 <0 _ (6.4

=P

Examining (5.18) and (5.19), the field expression derived in section §, we sec that the
field above the surface has the spatial dependence (6.2), and the gradients of its vector com-

i ponents are found in the same way as those for the field derived in section 3. Beneath the sur-
| face the fleld expression has two terms; one of these has the spatial deperidence (6.2), but the
other has the spatial dependence , .
2 '
:}"'j\ 1 gG) =z exp (KR 6.5
il : ' |
A ‘whose gradient Is
‘"‘:;1 : ‘ ,
"‘v‘i VxCi’)-[il?+-§ &) (6.6)
";ﬁ: ‘ A
::p‘ where k is defined as in (6.4) for <0, In order to calculate the gradient of a given underwater

field component, one multiplies the appropriate component of the first term of the field expres.
sion by ik, then multiplies the corresponding component in the second term by (k+3/z), and
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,-'! . 7. Discussion .

In the open ocean, the ionospherically induced electric fields that one might expect to
find on an electromagnetically quiet day will have fluctuations on the order of 1 u ¥/m, induced '
mainly by the solar daily variation, whose amplitude will be roughly 2x 1078 tesia, whereas dur-
ing an intense magnetic storm the field intensity might go as high as 10 u ¥/m; in the neigh-
borhood of a coestline, where there are boundary effects, the field intensities will typically be -
larger than those of the open ocean by a factor of 2 to 3. Assuming a uniform electrical conduc-
* ' tivity for the ocean of 3.3 S/m, this implies induced electrical current densities in the open
g .

ocean of from 3.3 pA4/m? up to 33 uA/m’ with larger values near a coastline, Use of this
“range of current density values in equation (2.5), assuming an ocesn depth of 5.0 kilometers,
2 ' gives for B, the magnetic induction in the air over the ocean due to induced electrical current
14 !; flow within it, 8 magnitude 7anging from 1.0x 104 tesla to 1.0x10"7 tesla and a direction hor-
! ' izontally perpendicular to the subsurface electrical current flow. By comparison, the Earth’s
magnetic field over.the open ooean off of La Jolla, California, is roughly 6x 1073 tesla in inten-
sity and has a tilt of about 60° from the horizontal.

The magnitude of the magnetic induction generated by the interaction of an ocean
, wave with the uniforin current density varies with the angle that the wave crest makes with the
! uniform flow, but a root mean square average of (3.39) over time, lateral position, and this

Rk

o v

e e X3 S

-~

: angle gives for z>0 -
? | |Bl = oo Joa op&2rz/N) ’ (1)
:’I:' i .

i where a Is the wave’s amplitude and X is its wavclength, A typical wave amplitude on a calm
A l day is roughly 1 meter, und during a storm one mignt see a typical wave amplitude rn the order
; " ' of § meters. Assuming a wave amplitude of 1.0 meter and using the current density range of
- X from 3.3 u4/m? to 33 uA/m? gives at just above the surface a magnetic induction magnitude
- | range of from 2.1% 10~!2 tesla to 2.13’10‘" tesla, assuming that the wave crests are parallel to
: ' the electric current flow. ' '

Performing the same averaging process on (5.18), we get for the mean magnitude in
the air of the magnetic induction of surface waves moving through the Earth’s field

i

ol w ek e
TP

|B| == % uoo a W/k) G exp(~2mrz/\) (1.2)

G= E+%F) (1.3

"\

!.-,-(’-&?' , where F, is the vertical component of the Earth's field and £, is the magnitude of the horlzon-
é h tal component. Most of the surface wave energy in the open ocean off of La Jolla falls in the
X
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i
3 |
3\ l range of wave periods frem § seconds to 15 seconds, equivalent to an angular frequency range
.. of from 0.42 sec™! 0 1.26 sec™!; using the dispersion relation for surface waves on a deep
~ ocean,
% ] - @ik . (1.4)
) _ . -
,E?c . ! (Sommerfeld, pp.168-173), where g is the gravitational ucceleration and has 8 value of about
ol ! 9.81 m/sec?, we calculate a range of phase velocities (w/k) of from 7.8 m/sec to 23.4 m/sec.
; 3 . The value for G in the vicinity of La Jolla comes to about 6x 1077 tesla, and if we again assume
{:‘ : a wave amplitude of 1.0 meter and an electrical conductivity for the ocean of 3.3 5/m we get a
o N "range of magnitudes for the magnetic induction at just above the ocean surface of from .
& 6x 10-10 tesla to 2x 109 tesla. .
iy : The uniform feld dlsf:umd in the first paragraph, that is produced by the ionospheri-

cally induced current flow, is at the weaker calculated extreme a little less than four orders of
magnitude down from the Earth’s field, and will generally not be detectable. The two wave
interaction effects are roughly five orders of magnitude down from the Earth's fleld, but their
periodic nature, both spatiaily and temporally, should allow them also to be detected. Except in -
the presence of s powerful magnetic storm the wave-magnetic field interaction effect discussed

in the previous paragraph will typically be roughly two orders of magnitude stronger than the
. " wave-current-interuction effect discussed in the second paragraph, making the latter difficult to
‘:";ﬂl'é L resolve from the former, as above the surface they have the same spatial dependence.
%ﬁ ) : Although these effects both scale linearly with the wave amplitude, making their ratio indepen-
R : dent of this quantity, the wave-magnetic field interaction effect is also directly proportional to
:;’ | the phass velocity of the wave in question, which Increases linearly with the wave’s period as

long as the deep water approximation is valid, The two wave interaction effects are seen from
rough calculations to have comparable magnitudes in the extreme case of a surface wave with a
period of (.16 second or less in the presehce of a strong magnetic storm,
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3N . ‘ Chapter II

. N :

: Magnetic Anomalies Induced by Bottom Features

%%,

Kid 1. Tntroduction

,ﬁg ' f " We consider in this chapter magnetic anomalies associated with the presence of rocky .

projections from and depressions in an otherwise level ocean fluor. Only magnetic effects due to

plectrical current flow within the water of the ocean are considered; magnetic effects due to
magnetization of the ocean floor, to the magnetic properties of large projections of magnetic -

minerals from the ocean floor, and to irregularities of magnetization of the seafloor rocks are

covered in other works (see fqr example Larson et al,, 1974, or Vacquier, 1972). In this treat-

ment, & large scale, horizontal uniformi electric current flow driven by sources of EMF outside _
of the ocean is assumed, and the local distortion of this flow by the presence of a bottom ‘ |
feature (treated as an insulator), is determined; then, by means discussed in section 2, the

magnetic fleld perturbation associated with this electrical current flow distortion is calculated.

As the scale of the bottom feature in question will typically be several orders of magnitude

greater than the amplitudes of any waves on the ocean surface, the simplifying assumption of a |
| completely flat ogean surface will be made. - |

ot ek o,
B2

gt

i In uctibn's. in order to give some feeling for orders of magnitude, numerical calcula- °
tions aro made of magnetic fields and the tensor gradients thereof associated with a submerged
hemisphere with a radius half the depth of the ocean and resting on a level ocean floor. In séc- -
.- tion 4, the problem of a localized bottom feature of arbitrary shape is considered, and section 5
v gives a quick algorithm for approximating the electrical current flow deflection by bottom
features of small aspect. Section 6 covers in detail the magnetic effects of small features of low

' aspect on the ocean floor (such as a low ridge or shallow trough), a subject touched lightly upon

. in section 4 of chapter 1. Finally, section 7 briefly discusses the problem of the magnetic

' effects due to the interaction of seawater current flow over a bottom feature with the Earth's

magnetic field.
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o 2. Mathematical methods

2.1 The basic Integration formula

The basic formula for computing the magnetic field B due to an electrical current den-
| ‘  sity distribution J within the ocean is the law of Biot and Savart as applied to a continuous
3 electrical current density distribution,

T(x)x (xg—-x) L

B(xo)"— ' rxl_, ’ : T ! (2.1)

P 70:) is assuined to have already been adequately determined for practical purposes, and may be
' taken as a given, ‘

In practical calculations, the selected volume of integration is broken down into rec-
tangular boxes, and the electrical current density vector 7(x,Y and ity tensor gradient at the
geometrical center 2 of each box are determined; the current density distribution throughout
¥ " the box is then assumed to be given by the formula

5 = 4 + @-£)VI () 2.2)

Also, it is assumed that the distance between xp and & is much greater than the maximum
dimension of thg box, allowing the expansion of the denominator of the integrand of (2.1) ina
binomial series. Given these assumptions, one can write an algebraic expression for the contti-
bution to the integral (2.1) and its tensor gradient of any given box in terms of the box dimen-
\ sions, the position & of the center of the box, and the electrical current density and its tensor
gradient at %,

We start with a variation of (2.1),

BB N S

| ; B@ﬁmﬁfmﬁmﬂﬁﬁw, 23
: 1i where | | . |
| Fom Xo= % | . (24 |
XmE+V . ) g

and R denotes the rectangular volume of integration centered on the position X3 the vector X
is a small offset from xg in an arbitrary direction, and is used to find the tensor gradient of B at
xg. For the current density distribution in the numerator of the integrand we write
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:% . TE+v) = To+ M7, ‘ | .6)

3 . .

: or y
a JGE+7) = Jy + th My : Q.7 : '
N - Co : 3
v . and expansion of the denominator gives ‘ -
. 1 (v

1 , — a1 < - 2.8

1 ~ rerGermP e )

r | | - - |

§ A3, 150 35 :

; : r&[l G i v L ) ’
3 |
,1 : where . z‘
‘\ o - - - - .v
) zm2 ro (x=7) + l(xl-'V)'(\xl-V) . . 2.9)

ré ré -

- A .

- -y g
3 : Insertion of (2.6) and (2.8) into (2.3) gives a series expansion in'rq, x;, and V for the :
;3 ' integrand, only & few terms of which are of practical interest to us, The terms in this series '
" that are linear in X, are sufficient for the determination of the tensor gradient of the magnetic :
o fleld, and so terms quadratic or higher in x; may be ignored; also, due to the symmetry of the ..
) o !
:} . volume of integration about &, the integrals of terms linear or cubic in ¥ vanish, and those of - C '
;ﬁ .\ terms quartic or.of higher.powers in V will in general be small enough in comparison to the :
h integrals of terms quadratic or constant in ¥ to be safely disregarded in practical calculations.
g ; , These two conditions together eliminate all terms in the expansion (2.8) derived from terms
v quartic or higher in z, and most of the terms in smaller powers of z in this expansion. When 3
’_‘ ' all terms of interest are taken into account, we have from (2.3) :
,jl : 30:0 -76"-8-[(.73)( ro){ - —C|+ls-C'zl : Q10 E
s :
id ‘ N Y —h I
A : - 3"0(]67‘ U‘l)+3"o(ﬁg‘|x "0)""3031 t
" ; )
g and 3
g - Blgi) = B + £ =2 | Uox 7o) y w105 Wi e Lo 4
i ‘ 8 ro 2 g y
r -- ]
; +(JBX;;)[1—'%C|+'!22C2]'-ja>([3l‘og‘g“ IS(ﬁ/ﬂ)U‘l] N
y : ;
A .
.

ey e D o = . v Y I - ey - A N L U W o v, " e % .
'l'l‘ . ‘. :'* .' “‘.". 0,%) AN ‘ () izl u*’ A% ) S "'u ." ’ v-"' ..‘ ﬂ'y.‘:‘- h\.u\ﬁ'\ ' . '7.\'_. N .o_.“ .t




R
3. ?
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e, ‘ ' N
:;1, +{3rM Ty - 15(W-x)D M) % ro+ 3rgMT, % ) + Irg( WD Ty
by where
o ‘
B\ '
ot . - 1 ~ .
S 0= <3 _[ V(oV) & | (2.12)
= () W,5: 72,5, W)
- L .
- e Tt : . 213
7, ’M{vmvm A | (2.13)
: * : = r5! Sxn,SiSxn)
e o o - |
el :. 1A 7}!5"3{ 7 % ) & S | (2.14)
I -pg ’
y
N
W 0 —My My '
e PulMy O =My (2.15) P
', ~My M, 0
g ,
vl
) where
n‘% My My My -
::hu =My My My . (2.16)
My My Myl
[
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. T o
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'-g ‘ | ed | - 0’2 ,

: ; where
h |
" Vo { &= dididy | (2.21)
S W= -; . o 2.22)

] d, being the dimension of the volume of integration in the direction %. The basic relation used
'-:, ! for the evaluation of the above integrals is

- y l "

SEJ _ { wy & =riVo8y S . (2.24)
“ X where 3 is the Kronecker delta. Expression: (2.11) may be rewritten in the form -
; o Bl =BG + T . 2.25)

_ where the construction of the tensor T is just a matter of sorting the coefficients of the vector
Iy ' elements of x; in (2.11) into the proper tensor elements of 7. When the field B is expressed
' in this form, it Is apparent that T is the tensor gradient of B at the point x;.
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5» One dimcul!y in the practical use of (2.1) is that it makes the implicit assumption that -
the entire electrical current density distribution is contained within thé volume of integration.
,' and use of a volume of integration that has a current flow through any part of its surface results
! in the appearancc of nonphysical elements in the results of the integration. As an example of
' this effect we consider the case of a semi-infinite wire extending from the origin in the positive
% direction out to infinity and carrying an electrical current in that direction. In this case (2.1)

becomes
| ) w Bolo o F_Goxvezd | |
,_ B = 2 [ rearimg & @26
. Xo ™ Covozd » - : YY)
ph=yd+2f . | | (2.28)
this reduces to -
Bixg) = L“p;(z GxWDKGD . (2.29)
or, ]
B =520 o ki) (2,30
where
K () = f m (2.31)
e X
L { L1
ré = x§ + p¢ (2.32)

(CRC, p. 322, eq. 196). For large distances from the origin and relati\rely much smaller dis-
tances from the origin this gives

lim, By = -"-°' : (2.33)

the field around an infinitely fong wire, as one would expect on physical grounds. However, if
we use Ampere's law to compute from (2.29) the electrical current density outside of the wire,
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which on physical grounds should be zero, we get

! J@) =L oxBm | (2.39)
i ] : .

TR ' .

~\;‘ : . .

._" . ' -_.!2.%‘~",2-r.y ‘..

b C the physical interpretation of this expression indicates a current density distribution converging
' on the end of the wire at the origin in such a way as to feed a total current [ into the wire end.
.In general, it seernts that assuming a source or sink of electrical current in the postulated electri-
cal current'denait& distribution results in a mathematical artifact that, if taken at face value,
cancels out the source or fills in the smk

In the calculation of magnetic fields associated with localized bottom features, one wil
typlcélly be dealing with an electrlcal current density distribution anomaly the bulk of whose
magnetic effects are produced by the part of the distribution in the immediate neighborhood of
the bottom feature, but which gives minor contributions to the magnetic field at substantial dis-
tances from the feature; in numerical calculations of the magnetic field the approach that first

oW

332;: o i | ' suggests itsclf is to consider only the volume immediately about the bottom feature, tolerating
AV errors of perhaps a few percent in the field values of interest in order to avoid expensive
; ' : integration over large volumes of seawater. On the basis of the example of the semi-infinite
'5";3 : wire, it appears that if this approach is used it must be used with care, as neglecting the

extended part of the current density distribution not only results in ecrors of omission, but may
also contaminate the calculated values with mathematical artifacts.

A method for dealing with the artifact problem may be derived by viewing an infinitely
long, straight, current carrying wire, for which there is an artifact-free solution for the magnétic
field and its tensor gradients, as being composed of two semi-infinite ‘wires pointing outward
from the origin in opposite di;ections and carrying currents ‘qf equal magnitude and opposite

%)
Fa
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P
¥

o

v :- sign. From the observation that the artifacts associated with the two wire segments must exactly
f . J cancel, we deduce that any terms in the magnetic field expression for a semi-infinite wire that
?T contribute to the artifact must be asymmetric with respect to simultaneous reversal of wire
direction and current direction, and we infer from symmetry argumentis that any singularities in
;'\g the artifact terms must be at the origin. Given that these constraints are sufficient to uniquely
"‘. ’ identify those te-ms contributing to the artifact, once an artifact correction cxpression for a
."%-\ . semi-infinite wire has been derived it may be use as a Green’s function for a general current
_-.:-: density flow through a surface. 4 \
vy 1 .’b‘.
"3 ‘
#
"
-
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To derive an expression for a semi-inﬁpile current carrying wire pointing from the ori-
§in in an arbitrary direction, we start with-a binomial expansion of (2.1), after the h_mnner of
(2.3);

13 m. Bicgty) = B(xo)+3‘.£xny) B‘,(xoy) , . (2.35)
By =42 -‘ZE%‘% &, (2.36)

Ry -2 f (T (i) Gi-%) 7

pa el 237

We let & be the unit vector of the direction in which the wire points outward from the origin;

and we let /o be the current flow out of the origin. Then (2.36) and (2.37) bacome

BiGoy) = -‘%‘L Wx) Ly G) | (2.38)
- T & o '
and
Bz(;oy)" .‘.‘_9.,.9. (W x xg) { xoLa(xg) = &L3(xp) )¢ 7 ’ : : (2.40)
L) = 3 { -l;_—&—f%m; . (2.41)
L,(a?;)-a_[—lg;‘i‘-'m,— CoL | (2.42)

It is seen. that L, (xp) is a generalization of X, (xy) as defined by (2.31); if we define

Xo = #Xg . (2.43)

po= Xo— Wxg ' (2.44)

pé = poPo (2.45)
-rd ~ x¢

pl = xo¥s (2.46)

then (2.39) becoms
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. ¢ -‘ dt
. JRSSRO.. - 1
& u) f I(xo'-t)»'~t‘po|3 ' (247) [ 1
g which, since by (2.43) and by (2.44) ) '
i - ' . :
g S Wpo=0 , 3 - . . (248)
o : ' . U
AR becomes -
syl 4 \
ﬁ ! r & ‘ ‘
Ja . =* - . . .
¥ | \ ’ This is the same integral as in expression (2.3'1), and its solution in this context is
) i '
. L - ’ . 2.50
i% ,. 10co) pé [ L+ o I 450
N ) where pg and 7 are as defined by (2.45) and (2.46) respectively. a similar process gives for L, ‘
':2,: and L, /
':\i 1 | %o
LyGeg -—IZL oE‘)+——--."°] : (2.51) B
. L o of | 160+ =5 | 1
: and ;
- o ‘
E Lyrp) = (b5l Laliy) + -};- S ; (2.53)
" ;
- o« By (2.44) and (2.53), (2.40) becomes
1! i
N ) -
8 Bylxoy) = %9’1;‘1 (hx) | poLaleo) = 5 I‘-y . , (254
n“ re .

¢

which by (2:51) becomes

,t.—..-.
A5 2

By = 420 £ i) | - [ -f’—’i--wl 25, b ]y L @ss)
I f é P !
IQ Finally, we have for B (xo)
' By - —#'L(Wxxo)z. D (2.56) .

-

or, in a cylindrical coordinate system centered about the wire and with its axis in the # direc-
tion, '

>

-*ngm* -3

P LAL hoatlet mmp '.;%{&tt

BALAL 5 I TN I o Al AN

N 00 LD N ST RS Wt e N dytel o it



- 1“ ’1:

29

‘< »

e

B(xo)-“°'° pod LiGy) . ' ' iy

i

Reexpressing (2.35) with an eye toward symmetry, we have

Jlm B Gkt ) = B o) + B (o) + By o) + BiGod) (2.58)

e

= I. .1...'" ’ "; | ‘ where the perturbation terms symmetric with respect to simultaneous }eversal_ of Iy and # are

Xy 20 x G |
R ! F(xy)_nololﬁxy_‘ ) 4 (2.59) -
. s w | pd - el ‘
+ S
KR and those t!ut are mtisyn‘xmetric are
& -
o . W x x - Wexg
t‘é; By 10:03) Molo ( o) - Po—?-0 ] v o (2.60) i
'y {
w . : and
:' . -t W‘fg‘) oy , o I
'3 _ R
L )
¢ . t
'}; R Taking denvutlves. e find that
| |
o
b VUxEy - - !‘-:;’9- —”f,- : (2.62)
) . .
A
i whereas -
A VxBy = VxBy=0 . (2.63)
,,: f It is apparent that the field derivatives associated with K, are artilh'pt-contributed. On the
““,l other hand, B;' 5 I8 not. lmplicaied as artifact-producing by the curl test, and is eliminated on the
" grounds that, like By and unlike By, it becomes singular everywhere along the axis of the
By wire, Hence, in (2.60) we have an expression that can be used for the correction of artifact ,
) ' f y s
i effects in the elements of the tensor gradient of the magnetic field. It is undesirable to make 1
_QE: _' an artifact correction to the magnetic field itself, since in the nonphysical truncatioq of a =
7l ' current flow one just loses the fleld contribution from the truncated section of the current flow
,";:; without also gaining a nonphysical field component in its place; it is essentially the absence of a ‘
e field component where one would expect it on physical grounds to be that is responsible for the
Ty nonphysical behavior of the field derivatives in the case of the semi-infinite wire.
ad) !
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o ’ 2.3 Streamline tracing _
f‘ ' ‘ In numerical exploration work it is frequently desiruble to trace streamlines of electri-
. “é ' cal current flow, perhaps to check for peculiarities in the flow distribution’that might require
3‘ : special pregramming to handle. The simplest approach to streamline tmcmg is to pick a starting

point, find the current density vector at this point, extrapolate in the direction of the vector
from the starting point over some convenient interval of distance to a new point, and, using
this. new point as a starting point, repeat the process for as long along the streamline as on
wislies to trace; however, in problems where there is some region in which the direction of the
| current density vector changes rapidly with position (a characteristic of most broblems of practi-'
i cal interest), this method can lead to large cumulative errors unless the step .size is kept expen-

=)
<4

& g ' sively smail. To deal with this dnfﬂculty, a more complicated method of the predictor-cotrector
-’““‘f . : type was developed, and was found to be satisfactory. _
- ‘ ' We assume two paralle] planes separated by a distance d and a streamline passing

through them "both.-lntemecﬁnﬁ the first plane at the point x and then the second plane at the

. point 7} the electrical current density is given for everywhere between the planes, The basic.

iden of the method is that if the direction of the current density vector v, at the point &5, along

, the streamline midway between the two planes is determined and a line is extended from Xy in

' the direction of v until it intersects the second plane, then the point of intersection will be

very close to &%, provided that the curve of the streamline is roughly uniform and reasonably

, _ gentle. To upproximate the position of this midpoint, we first determine the current density
- vector v at the point Xo, then draw & line from X in the direction of vy until it intersects the

SEERE AR

@ i second plane at the point x\;
N Mimd Lt iy, ‘ (2.64)
) a'Vo . .

1

where & is a unit vector perpendicular to the planes and pointing from the first plane toward

. 1,':,? ! the second. This line will miss 2% on the convex side of the streamline. We then find the point
Ug’; . -t -t —
%S. : X2 midway between xg and x|,
1/ X1 Y (6—g) + 5y (2.65)
-!h. 1)
o 4V =
: 3 0 -; +x9 ,

and find ¥, the current density vector at x3; this vector should be a somewhat better approxima-

-1 25

tion to v, than is vq. We then draw a line from .xg in the direction of v; until it intersects the
second plane at the point x3;




» ‘ A k}|
md—de iy . | | (2.66)
. .a‘Vl' i i .

This line should miss & on the concave sidb of the streamline. The point x; midway between

X3 ahd X is given by
', Fom h G0 + 5 N o : (267
. R |
uﬂﬁ' R The point xs midway between x; and x;, |
;a"'&,:*»”«% | . BeHG ' .68
ﬁt “w Y (FebED) |
i

_should then be fairly close to %5, and the current density vector Vs at xs should be a good
approximation to V. Finally, we draw a line from Xp in the direction ofﬁ umil_it intersects -
the second plane at the point X¢;

fed = i (6.69) °

. 6 D';; 0 Mad
The point x¢ within the second plane should then lie very close to &, Although this method
requires considerably more calculation per step than does the simple extrapblatlon from xp
. along the direction of vy, it permits one to safely increase the step size to the point where the
A ’; total amount of calculation needed to trace a given length of streamline is much less than that

R required by the simple extrapolation method. -

.‘\"\“ by . ) :

;:"0’: ' For probleins in which a streamline may double back upon itself, giving rise to the
™ .

- ; possibility of denominators going to zero in some of the expressions given above, this methed

may be modified to suit. In this case, we picture a sphere of radius d centered at the point X0,
and postulate a streamline passing through xo and emerging through the surface of the sphere
at the point &, The formulas corresponding to (2.64) through (2.69) are

v e e
E7 2%

1=
1

ri

e K= d o R (2.70)
v |vol
)
¥
o d Yo | |
E’;ﬁ Xy 3 T\T—;)T + X9 (2711
4 — ‘;; i v—
: Xy d T:.T + x¢ 2.72)
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- d V= | |

Xe= 3 B + Xg | .(2.73)
PR - W ol SR |

X5 T8 — ey e X 2.74
R N7 oA R | 274)
.f;-aﬁ—-»-i.; \ ' - o 2.79)

where X is thq method’s approximation to Xo. Note that, due to scaling 6pportunities not
present In the previous case, X; and x; in (2.74) may be replaced with X; and x3 respectively,

thereby eliminating the need to calculate Xy, -
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3. Magnetic anomalies in the- alr nbove a submerged hemisphere-

In order to gain some feel for the orders of magnitude of the mugnetic Seld values
associated with a localized bottom featuré, we consider the case of a hemisphere with its base
Y resting on an otherwise level ocean floor and with its radius equal to half of the occan depth.
An electriul. curreat density field, uniform at large lateral distances from the hemisphere, is
induced within the ocean by an outside source of EMF, and the anomalous magnetic effects
assoclated with the bottom feature are defined to be those arising from the perturbation on the .
uniform electrical curtent fleld cnused by the feature.

PG £

5%

Ao '

{é{; ‘ ~ The caloulation of the electrical current fleld is -baset_i on the placement of current

i o dipoles in such a way es to satisfy the boundary conditions of the problem, these being that

& * there should be no current flow through either the ocean floor or the ocean surface. The basic

¥ formulae for the estimation of the appropriate dipole strengths are those for the electrical
- ,"'i f ' current density distribution about and within a sphete of radius a suspended in an infinite

‘ : ocean within which the electrical currcnt density field approaches Jo& at large distances from

W ' the sphere, '

LR : '

oL, | 3 o '

‘,» l - 7(!‘,0) - Jo[ﬂ - '%5'(7 cosd + 4 0 sing) ] , rsa . @(3.1)

i, ' :

S/ IOE 0, r<a 6D

where 7 is the distnnne from the center of the sphiere and the directlon of o=~0 is patnllel to &,

e e e

3 S expression (3.1) is the gradient of the potential

‘ v ¢(r.0) Jo[ r+ == 2' ] cosd | - 3.3
0:; | | ;
o which is a solution to Laplace’s equation, and (3.2) derives from a trivial solution to Laplace's

equation. It may be verified that on the spherical surface defined by r=ga the curren density
field component J-# normal to the surface is equal to zero. Expression (3.1) is seen 11 be the
superposition of a uniform field Jot and a dipole field having a strength of (Ja¥/2) and a

:9,;%5?'

.

ojl direction antiparallel to the uniform component. These expressions also apply to the case of a
| hemisphere of radius a resting on the floor of an ocean of arbitrarily great depth, as the
;:; ' cylindrical symmetry of the sphere problem about the x-axis guarantees that no streamline will
'Z:" 4 intersect a plane containing the x-axis. The case of a hemisphere resting on the floor of un
::": . ' ocean of finite depth may be approximately dealt with by sciting up an array of many dipoles of
equal strength and a common orientation antiparaliel to the uniform field Jy%, equally spaced

Lot

.-

along a line perpendicular to & with a spacing equal to twice the depth of the ocean. Ii the '
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ocean floor is taken to correspond to the plane bisecting this line at the cemral dipole of this
array, and the acean surface to the parallel plane midway between this dnpole 3'1d the dipole
immediately above it, then by symmetry there is no current flow through either ocean bottom

~or ocer . _urface; however, due to the effects of the dipoles on either side of the central dipole,
the surface about this dipole on which 7?-0 is no longer a perfect sphere. but an oblaté
spharoid. The degree of this hemispherlcal distortion was examined by use of a streamline trac-
ing program with graphical output, and it was found for an array of five dipoles that if the value
of a is no more than half of the ocean depth then the deviation of the sutface about the central
dipole from a hemispherical shape is dificult to see with the unaided eye, implying a distortion
of no more than about 5% of g,

rp > -
-
A

SRR
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P |
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Granted that this method adequately gives the electrical current density distribution
within the ocean, the'next step in the magnetic anomaly calculations is to use expressions
(2.10) and (2.111). giving the magnetic effects due to the current density distribution within a
'rectmgulnr box, for incremental ,integration over the current density field to estimate the total
. ' magnetic fleld and its spatial derivatives at various points of interest. The procedure that was
constructed to do this starts with the selection of a volume of integration having a rectangula
horizontal cross-saction and reaching vertically from the ocean floor to the eurface, covering a
substantial area of the ocean floor about the bottom feature; this volume is oriented so that its
vertical faces are either parallel or perpendicular to the & direction. The volume is then sec-
tioned by a set of equally spaced planes perpendicular to the £ direction, and also by another
set of equally spaced planes (not necessarily the same spacing as the first yet) both vertical and
perpendicular to the first set, thus breaking the horizontal cross-section of the volume up into &
regular rectangular grid. Then, one goes to the bottom edge of the ubcurrent face of the
volume of integration, and draws a horizontni. line along the face slightly above the edge, mark-
ing the points along this line that intersect the sectioning planes parallel to £, these points serve
ay starting points for the tracing of a streemline surface, the algorithm for which is given in the
next paragaaph. The objective of this part of the pro'ced‘ure is to trace out a streamline surface
running very close to the ocean bottom, and use this surface in sﬁbsequent ’culculations as the
base of the volume of integration; this is substantially less cumbersome than numerically speci-
fying the shape of the ocean bottom, and the error introduced into the calculations by this
approximation may be made negligible by starting the streamline surface tracing algorithm
sufficiently close to the actual bottorn. The tracing algorithm yields the points of intersection
between the streamline surface and the regular array of vertical lines which are defined by the
intersection ol the two perpendicular sets of sectioning planes. One constructs a rectangular
volume about each one of these verticul lines from the point where it intersecls the oceun

5
",
T

oy
.' )

RN g RO RINN P X R P A L' ALhhy Llh.l vah " " "'”'"" ’ { ‘.M'\ N S AT AT ."* -":-‘:'n' J



35

bottom to the point where it intersects the ocean surface, and then then divides this into small
rectangular boxes, to each of whlch the expressions (2.10) and (2.11) are applied and the mag-
netic field contributions therefrom summed; the latcral dimensions of the rectangular volume
taken to be about c.ach line are determined by the spacing of the lines, and chosen so that the
vertical faces of these volumes meet, thercby covering the whole volume of integration. 'The
current density distribution used with these expressions is the anomalous current density distri-
bution, which is the total field with the uniform component Jo% subtracted off: the current den-
sity field between the ocean surface and the streamline surface is then only the superpositi'on of
the individual dipole fields, and the field below the streamline surface and above the ocean floor
is just ~Jok, with the field everywhere else being equal to zero.

The alcorithm used for tracing a streamline surface is partly based on the first stream- ‘
line tracing algorithm discussed in section 2.2, We suppose that the sectioning planes perpendic-
ular to & are separated froru each cther by a distance d, and that on one of them we have a set
of points along the intersection curve of the plane with the streamline surface, these points
being the points 9t lnteréectio,n between this curve and thq vertical lines defined by the inter-
section of the plane and the perpendicular set of sectioning planes, Using a single step of the
streamline tracing algorithm for each one of these points taken as a starting point, we get
another set of points on the next plhne over in the & direction, to which we can fit another,
slightly different, curve; in general, these polnis will not lie on the vertical lines of intersection
in this plane. Finally, we 80 In turn to each of the vertical lines of intersection of the second
plane, and fit a cublc polynomial curve through the four points nearest it (these usually being
the two nearest points on either side of the line), and and record the point where the fitted
curve crosses the line. This last set of points may be used to start another step of this algo-
rithm, which may be used recutsively to trace the points of the entire streamline surface., Asa
final check of accuracy, one may note whether or not the streamline ‘surface tends toward a flat
sheet slightly above the level ocean floor as it is extended past the localized bottom feature,

Note that it is unnecessary to trace out and store the points for the entire streamline surface
before proceeding with the integration; it is possible to perform the integration for a given
o plane after computing the streaniline surface points of that plane from those of the previous
- _ plane, add the results of the integration to an accumulated sum, throw away the points of the
! previous plane, and then go on to ihe next plane, and so on, with considerable savings in pro-
.’ ' gram array storage space.
' ‘ In dealing with the electrical current density distribution truncation error problem dis-
* . cussed in section 2.3, a method that has proved ressonubly effective in practice is to examine,
in the course of integration, each of the rectangular boxes that constitule the basic unit of
N
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m ) integration to see if it has one or more faces on the outside of the volume of integration, if an
‘ . outside face is detected, then the current density vector at its center is multiplied by the area of
,,’ S | the face in order to estimate the total current flow through the face, and then equation (2.60)
ti | from section 2.3 is used with this information to calculate corrections to the elements of the
' b ’1 . tensor gradient of the magnetic field. ,Fgllure to make such corrections will resuit in nonzero
L : values for the curl of the magnetic fleld in places, such as empty air, where there is no electrical
. ~ ' - current; practical experience has shown that these tensor element corrections can_be’compnrable
E . ' in magnitude to the elements of the corrected tensor, A further problem exists in that the
',% . current density field on the faces of u box is estimated by the imperfect method of extrapola-
e ' - tion from its value and tensor gradient at the center of the box, und that therefore one ‘can

Co expect slight discontinuities in the current density fleld as one passes from one box to the next, .
properly, the effects of these discontinuities should be corrected for with further applications of
(2,60), Also, thers will be minor errors from the use of (2.60) on the outside box faces with
what amounts to face-averuded current densities, rather than the more correct prbcedure of

; integrating (2.60) over the surfaces of the faces i ‘question. However, both of these additional

_ g _ sources of error can be reduced by éutting down on the size of the basic unit of integration,
%@ and, with the primary source of error allowed for as described, practica! calculations imply that

' accuracy to two significant places seems feasible. |

The actual calculations were done for a roughly hemispherical shape of radius 4.0
meters at its buse on the bottom of an ocean 4.5 meters deep (see figure 2.1), assuming a uni-
form electrical current density field corhpox)ent of 1.0 ampere/ meter? in the & direction; scaling
relationships rnay be used with the fields and their tensor gradients calculated for this model to

Bt » estimate the corresponding values for a somewhat larger system with a different uniform

. J : ~cutrent density field component. The fluttening shown in the figure near the top of the projec-

: : tion from the seafloor is the result of the use of only five dipoles to simulate the electrical

b current flow about a hemisphere in the close vicinity of the plane of symmetry which in this

'g..J representation stands for the ocean surface. Had & much larger number of dipoles bsen used in

| : P the simulation, this flattening effecl could have been greatly reduced, ylelding the flow pattern
"Nl

8 about a nearly perfect hemispherical surface; however, such a flattening at the top is in fuct a

- characteristic of some oceanic features of interest, such as scamounts, and accordingly is more

‘ realistic for {eatures of this sort. The basic unit of integration was a cubical box 10 centimeters
on a side, and the grid spacing of the vertical lines of intersection of the sectioning planes wus .

L/

¢

w , 10 centimeters by 10 centimeters. At each one of these vertical lines, cubes were stacked from
;1 the ocean floor upward until a cube extended beyond the streanitine surface, at which point this
> cube was truncated level with the streamline surface; expressions (2,10) und (2.11) were then

Wl &
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FIGURE 2.1

Streamline flow over the roughly hemispherical bottom feature in the verticul plane parallel to
the flow at a distance from the feature and passing through the centerline of the feature; to
point up the extent of the deformation from the flow pattern over a perfect hemisphere, a hem-
isphere of the appropriatc radius is superposed over the streamline pattern,
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(;‘i , . used, assuming a uniform current density field of -1.0 ampere/meter? % within all of the ' z

& imegration units. Then, cubes were stacked from the top of the truncated cube untii one X

‘ .r;. extended above the ocean surface, at which .point this_ cubé was truncated lever with the sur-

‘:; face; the current density fields ‘and their tensor gradients used in expressions (2.10) and (2.11) :
_.1 ore generated by the five dipoles making up the vertical dipole array for this problem. The total
""" ' volume of integration was 20 meters by 20 meters laterally by 4.5 meters vertically, with the
% ! ' hemisphere locategl gt its bottom center. Ti'acing of the streamline surface was started 15 cen-

4,-(: ) timeters over the ocean bottom at the upcurrent edge of the volume of intagration, and its
7"\' ‘ - extrapolation at.the downcurrent edge of this volume differed no rore than 5 centimeters from

! " this height at any point along the upcurrent side, verilying that the extrapolation had been

properly done. Calcu}atiéng were done for various points of interest in the air over the ocearf '

ﬁ : . surface, and the results are presented in table 2.1. The x-axis of the coordinate system points in

'j. : the direction of the uniform component of the electrical current flow, and the z-axis points
_,W npward, the origin of the coordinate ,sys'tem is on the ocean bottom, at the center of the hemi-
- ' sphere.

We make this work useful in practice by developing scaling relations for the magnetic

. fleld and its tensor gradients in going from one system with one length scale to another system
with a different length scule but with the same ratios between its various length parameters as ' , /
the first system. Referring to equation (2.1), we see that the magnctip field is linear with ‘
respect to the electrical current density. Further work with this equation, experimenting with
changes of length variables by multiplicative factors, indicate that if we have twc syétems,

identical except as to scale, and B, /i, and d, are magnetic field, electrical current density, and
length parameters of the first system whereas B,, J,, and d, are the corresponding parameters

P

' of the second system, then we have | ' B
L .
WY By J; 4 .
-~ By & 4 ¢4 'l‘
r. h "-‘ ' ' X
‘L;;J the same process applied to spatial derivatives of equation (2.1) shows that if By and By’ ar :\
|, . X
. '_‘ corresponding magnetic field gradients for the two systenis, then . ' jf'
A .
2l ' B l' J 1 ' : ) i

which is to be expected, as the larger system will show a smaller percentage change in a field

N
)
i 2w o
.@&
- _t_a o
-
s

value than the smaller system for a given change in position,

As an example, suppose that we wish 1o find the magnetic fleld and its tensor eradients

__‘a -

N
Bt !

at a point 1.0 Kilometer in the air over the surface of an ocean 4.5 kilometers deep, with a
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. x=0.0meters xw=40meters

<
1
¢
g
3
a

;
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i . B, 0.000 -0.111
"y B - 0432 0.137
b B, -0.338 . 0.194
Be -0.048 0.002
’\xi B, 0.000 -0.001
- By 0.000 0.048
*E B, . 0.084 -0.055
& By 0016 - -0.007
| By 0.132 . 0,083
3
nl

' ! ym0.0meters x=00meters xw=4.0meters
/"‘a‘. .
. B 0.000 0.000
?1&: B 0.473 0.325
' i3 B, 0.000 0.000
&
¢ Bx 0.000 0.000
- . By 0.000 -0.050 3
- By 0.000 0.000
a B, 0.000 0.000
N B -0.151 -0.088
_ \)4:} . By 0.000 0.000
. ' .
[ "' d
. Y .‘
," . _ ~ TABLE 2.1
| |
. Field and field gradient values at selected points in a horizontal plane 1.0 meter above the sur-
Y face of an ocean 4.5 meters deep with a hemispherical bulge of radius 4.0 meters resting on the
\.-* - bottom, as described in the text on page 36. The field values are in unite .f 107 %esla, and the
tj field gradient values are in units of 107" fesla/meter. The origin of the plane is on the axis of
" the bulge. In the absence of the bulge the field would be a uniform Bw—2.82x 1076 tesla.,
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shape such as illustrated in ﬁgurg 2.1, having a radius at its hase of 4.0 kilometers. rosting on

the ocean floor directly below the point; we assume a uniform clectrial conductivity ui' 2.3 S/m

for the ocean, and subpbse that sources of EMF outside of the ocean induce an essentially con-
stant electric field within it that is a dniform 1.0 w ¥/m in the X direction at great distatices

from the distorting effects of the he'misphere. The system described is that of table 2.1 scaled

up in size by a factor of 1000, with an electricel current density at large distances from the

hemisphere of 3.3x 1076 a(ﬁpem/meterz.in the % direction, as opbosed to 1.0 ampere/ meter? for

the smeller system. From equation (34) we then have for the field values that
By= 3.3x107* B,, and from equation /3.5). we have for the field value gradients that’
By = 3.3x10¢ By'. Referring to table 2.1 to get the field values directly atove the renter of
the bottom feature, we therefore have for B,, the only nonzero ficld compenent, a value of -
1.6x1077 tesla, and for B, and B, the only nonzero tensor gradient elements, a common
value of —6.0<10~"? tesln per ‘meter. Using this procedure, we scale up the contents of table
2.1, giving the resuits in table 2.2,

As there are no electrical cutrents in the air above the ocean surface, the magnetic
field in this region can be expressed as the gradient of a scalar potential which is a solution to
Laplace’s equation. The principle restriction on the practical use of the method of magnctic
field computation discussed in thu~text above, that the points at which the field is computed
must be e distance above the ocean surface that is on the order of many times the largest linear
dimension of the basic unit volume of integration, cen in principles be circumvented by fitting a
general series expansion solution to Laplace’s equation to the values computed by this method,
and then using the resulting ‘poiential expression to compute the mégnetic field and is tensor
derivatives at points elsewhere; probably thie best such solution to Laplace’s equation for this
purnose is an expansion in the spherical harmonics about the center of the base of the hemis-
pherical shape, using only those terms which vanish at arbitrarily largs radial distances from this
point. However, one should bear in mind that downward continuations of this sort tend lo be
numerically unstable, in that small errors in the determination of the field values at the 1.0
kilometer altitude above the ocean surface can easily be multiplied to large errors in the values
computed at the surface from the potential expression, and that ihe field gradients computed by
the method of this section are mildly prone to distortion by the eifects of those mathematical
artifacts which cannot be completely compensated (principally those introduced at the faces of
the basic 'rectangular volumes of integration making up the simulation volume, and in particular
those faces which are on the outer surface .of this volume), it could easily happen in many cases
that the continuation errov exceeds the magnitude of the value being nomputed, and it Is
recommended that in fitting the potential expression to the values numerically determined
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0.00
- 044
-1.1

-0.16
0.00
0.00

«0.28

- 0.05
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4
3

0

1.6
0.00

0.00
0.00
0.00
0.00
«0.60
0.00

EEEpEp BEE 3

.B-—9.3x 107 tesla.

x=00km x=40km

044
x-;- 00km x=~4.0km
0.00
0,00

TABLE 2.2

Field and field gradient values at selected points in a horizontal plane l.Oikilometer above the
surface of an ocean 4.5 kilometers deep with a hemispherical bulge of radius 4.0 kilometers
resting on the bottom, as desi:ribedin the text on pages 38 and 40, The field values are in units
of 10 teslz, and the field gradient values are in units of 10~ tesla/ meter . The origin of the
plane is on the axis of the bulge. In the absence of the bulge the field would be a uniform
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-0.37
0.45
0.64 .

0.005
-0.003
0.16
-0.18
0.02
0.18

0.00
0.11

0.00
0.15
0.00
0.00
-0.29
0.00
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s c moderate to large distances above the ocean surface one relies heavily on the magnetic field
vector elements, which should be somewhat less contaminated by mathematical artifacts than
A the tensor gradient elerents.
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4. Solution for the electrical current density distributien in an ocean with arbitrary bottom
features

Given the methods of section 2, the magnetic anomalies resulting from a given bottom
feature may be computed provided that the electrical current. disturbances associated with that
P feature are known. In this section an algorithm is given for ﬁhdlng the electrical current distri-
bution about.a locali;ed bottom feature of arbitrary shape. ’

The construction process starts with a level-surfaced ocean of indefinite depth, within
‘which there is a horizontal electric field presumed to be induced by sources in the upper atmo-
sphere. This primary electric field. £y is taken to be the gradient of the potential &o, and is
assumned to induce, an electrical current distribution Jy according to the relation -

];-a' v¢0 y ' ‘. 4.1)

where o is the electrical condhétivity §istribution for the ocean.

A pillbox-shaped closed surface is then postulated, whose top is the level ocean sur-
face and whose bottom has the'shape of a hypothetical ocean floor .proﬂle; this profile is taken
to be level and parailel to Jy except for‘a tegion close to the axis of the pillbox, where the
profile is allowed to take any shape that does not intersect the top of the pillbox. We now
assume a potential ¢; and an electrical current density distribution 7 such that

= =

ﬁ- V=0 V@) |, : (4.2)
'ﬁ" ' .
*g: and require as boundary conditions on J that its component normal to the pillbox surface
B ' should be zero at all points of the top and bottom of the box (indicating the absence of current
: flow through either boundary), and that the pillbox sides should be far enough removed from
: the central disturbance that 7 may safely be assumex to be equal to Jg.
The boundary condition on 7 at the top of the box is already' met by Jy, so we have
for ¢ there that
2V =0 , (4.3)
: L
; and at the bottom of the box we immediately have from (4.2) that %
.Ai RV =~ Vg , 4.4 R
'!
kS where # is the inward-pointing unit vector normal to the box surface; since by hypothesis Jy is 5;
N parallel to the bottormn except near the axis of the box, this reduces to (4.3) over most of the ,
- box's bottom. On' the box sides, the condition that J=Jg implies by (4.1) and (4.2) that i
Q
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Y V=0 . y - (45)
; " : The normal derivative of ¢, is therefore specified over the eéntire closed surface of the pillbox,
X thereby constituting Neuman boundary conditions, which are sufficient to-define a solution for
N ¢, unique to within an additive constart. We thus have 7 everywhere within the box; as J
ti‘ meets the boundary conditions appropriate to an electrical current density distribution within an
- , ocean having the specified bottom topography, the problem is solved. For methods to compute
}.’ i ¢, given Neuman boundary conditions, see Forsythe and Wasow, 1960.
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5. A quick, inexact method for approximation of the electrical current density distribution
due to a localized bottom (eﬁture ' :

For situations where tl'ie aspect of the bottom feature is small, a quick if inexact
method for estimating the associated electrical current flow disturbance is outiined. As in the
previous section; one assumes a horizontal electric fleld £; such as would exist in the absence
of an oceun bottom, constructs a hypothetical surface within the ‘ocean having the shape of the

‘actual bottom topogmp‘hy; then calculates at each point. on this sheet the component of £

parallel to the surface normal. A surface charge distribution over the bottom sheet is then
estimated that will give rise to an electric field whose normal component at each point on the
sheet exactly cancels the corresponding normal component of £;. The supplementary condition -
that there be no electrical current flow through the ocean surface (which is assumed for con:
venience to be level) may be met by constructing a system of image reflections of the estimated
surface charge distribution thr;)ugh the blanes of the oczan surface and the level ocean bottom
from which the bottom features are taken to protrude, This method is suggested by the physi-
cal observation that au clectrical current flow over a bottom irregularity will in fact deposit
charges on the irregularity’s surface in a fashion tending to divert the flow away from the irre-
gulerity, :

. There appears to be no rapid, straightforward algorithm for deriving a surface charge
distribution that will exactly solve the above problem, Hchver, an approximate method exists
which should serve adequately in many cases of practical interest. Suppose that we have an
infinite plane surface with a unifoﬁn surface charge density p,,, which is embedded in an
infinite uniform dielectric mediurn -with a dielectric constant ¢, ; then by Gauss’ law we have
that the electric field £, in the medium is given by the relation

E=fuy | ' . G.1)

where A is the normal unit vector outward from the plane. If the plane Quﬁ’ers a local deforma-
tion of small aspect, then this should still be a reasonably good approximation for the electric
field at distances from the surface small compared to the lateral extent of the deformation.

Similarly, if the surface charge Is allowed to vary gradually from one point to another
on the surface, then for our purposes the approximation should reinain serviceable for distances

from the surface small with respect to the scale of variation; such a charge variation would pro-
duce a horizontul electric field component close to the surface, but the local field indicated by
(5.1) should nevertheless be a fairly good estimate of the normal component of the field at
small distances from the surfuce. The seawater medium with which we are in practice
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®a

ﬁ ,'{1,._:.__,

concerned is not a dielectric material, but, as it is only weakly conducting and in principle the

> .
s-' ' distribution of free charges in the preblem is maintained in a steady state by outside sources of
1 , EMF (upper atmospheric sources, etc.), it may be considered to be a dielectric tnaterial for the
purposes of these calculations. The effective dielectric constant of this medium is difficult to
‘ 24 | - estimate, and it is fonunate that its value has no effect on the end results of the calculations. In
jwj b calculations deriving the surface charge p from the feld Ey wnthin a medium of dielectric con-
) ' : stant « it is the ratio (p/c) that is solved for, and it is this ratio that is used in tarn to compute
E: f the correction field to £j; providcd that the surface charge is used only as an imermediate cal- .
,; culational device, rather than being given any physical sxgniﬁcmce, any value of e wnll do pro-
- vided that it is consistently used. A value of 90 &g, roughly the value for distilled water ai 0°c,

} o would be a good choice if one wishes p to have a physically reasonable range of values.

- 2 -

A

The recommended approximation is, then, given by

)
B

p=-2, Egh , | ~ (5.2)

2P

where # is the normal unit vector directed outward from the charged surface at a given point,
E, is the uncorrected field vector at that_' point, and e, Is the chosen value for the effective
dlelectric constant of the seawater. For calculation of the correction field £} one might sweep
the surface charge distribution into a number of small piles and use the formula

RN UA N x

s .

3 E® =g Sagy 6y
! where N is the number of piles, g; is the accumulated charge in euch pile, and ¥, is the position
& of each pile. If the surface charge distribution derived from (5.2) is divided sufficiently finely,
’,;: the resultant error in the field calculations will be smaller than the error of approximation in
, using (5.2) to get the surfuce charge distribution. In any case, it is strongly advised to use a
4 ‘ streamline tracing program such as is doscribed in section 2 to verify that the above procedure

1

has given an answer acceptable for one's purposes. In the e‘vent that the approximate solution
falls short of adequacy, it may still usefully serve as a starting point for a charge-redistributing
variation program lsading to a mote exact solution. The electric current density distribution J
within the ocean is given by '

T=a(EtE) , (5.4)

where o is the electrical conductivity distribution within the ovean.

k.
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?Z‘s,é oo 6. Shallow features on the ocean floor
'I'ﬁ o 6.1 Basic mathematics
,‘ L The shape of any reasonably smooth botiom feature can-be described by the superposi-
’ tion of terms of the form - : ' '
" . C ) =a eplky®) @.1)
A . !
‘;\, j © Ky = k (cos6,5in0,0) , k>0 , : | (6.2)
Rl ‘

B whers { is altitude relative to the mean depth of the ocean floor, and the magnetic effects of a

' single such term may be computed by means of a variation of the mathematics developed in .

e ‘ section 3 of chapter 1 for finding the magnetic effects of a shallow wave on the ocean surface.
';;.% g " Provided that the relatio between bottom profile dnd associated magnetic effect is linear, the
\ ‘ : inagneti~ field due to a bottom profile given by the superposition of a nimber of terms of the

form (6.1) is just the superposition of .the fields calculuted for the individual terms. It will be
seen: that, for this linearity to be safely ass{xmed, the amplitude of each term must be somewhat
smaller than its wavclenkth and .somewhat smaller than the depth of the ocean, and ihe electri-
cal conductivity of the seawater al the ocean bottom must be essentially constant over the
term'’s.amplitude range,

=

ﬁ, - The ocean: bottom feature problem differs from the surface wave problem discussed in .
i 1‘" ‘ section 3 of chapter 1 in that the scale of the induced electrical current density distribution per- -
n Fr ; turbations could renscmably be a significant i‘racuon of the depth nf the ocean, and the electrical
o 1 ' conductivity of ‘the ocean’cannot automatically be considered uniform throughout the ucepn.
".:» Keeping this in mind In the adaptation of the surface wr.ve mathematics to the present prob- ’
ﬁ ' letn, we writs for the slectrical current density distribution 7 l
S J=aF (6.3)
i Eevs 6.4) g
4 t '

i 31 S the divergence condition :
‘p bl \ [
Lo | VB (6.5) .
N |

jk‘ then gives us from (6.4)
vh ,»
A . . 'vz¢ - 0 . ) (06) ‘L
) ; , We assume an electric ficld £5, induced by sources of EMF cutside of the oceatt, that weaid be . g
N
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the field within the ocean in the absence of bottom features; it is taken to be horizontal and

uniform within the occan, with the form |

: Bo~ Eot - | € 3 |
1 . We then have for the general s;)luti.on to (6.6) . :
" ¢ = Eox + A exp (iky¥) + B exp (iky¥) | | 6y ;
~ 3 B~k (cosdind=i) - ; | 6.9) ’
% ‘  ka == k (cos6sinb,i) . ‘ ’ ' (6.10) |

and hence

=

EmEt+ Fil A epGii®) + By i B ep(Ry®) . (6.11)

g The term in A represents a field coﬁlponenﬂ that grows exponertially upward, and the term in B y
i represents a component that damps exponentially upward; if' the ocean were assumed to be
5 infinitely deep, then the term in' A would vanish. : - X
. Let us define the vertical coordinate so that the mean level of the ocean floor is at z=0 )
h . and the level of the ocean surface is at z=d. The boundary condition at the surface, that there -
§ P be no electrical surrent flow through the level surface, is ‘
N :; i J2wm0 at z-d. y (6.12) .
N 1 . : ' ) D)
! which implies through (6.3) that V.
' E2wm0 ot zad , ‘ (6.13) |
( !
) | . from this conditic’ and (6.11) we have that )
. A=Bephd) . | 6.14) X
.‘ ||
1 f The corresponaltiy boundary condition at the bottom is l
- : ;:
™ T¥#=0 o z2=f(xy) , | (6.15) *
Y r-l—i’i,-i‘%i.l] . (6.16) 3
. :5 | ox oy
) By where 7 is & vector normial to the ocean tluor at z=¢ (x,y) as defined by (6.1). Once again. b
- : from (6.3) we have ' )
(. :
b
2.
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EF=0 at z={ ; (617
using (6.11) for E , ASSuming tﬁat
lkal << 1 , | (6.18)

and discarding terms quadratic or higher in'(ka), we get from (6.17)

Be=-iaExco® , (6.19)
where
U Y— - (620
1= exp(=2kd) e

We then have from (6.11) for the electric field within the ocean subject to (5.18)
B Eo (% +a k) x cosd exp (~2kd) exp (i ®) + a Ky x cosdexp (ky®)) . (6.21)

'In the course of this derivation one finds that, in order for the discarding of the terms hfgher
than linear in (ka) to be valld, one must also assume that ¢ >> ], In partlculm if a 2 Ad
then the result (6,19) becomes grossly invalid,

* From equations (2,1) and (6.3) we have for the magnetic fleid B (o) at the position £

B(xg) = -;;r-_[. :{:dy ik o(z) —— '-}-__?I',—- ) $6.22)

where the electrlcal conductivity of the seawater is assumed not to vary laterally. For purposcs
of calculation we find it expedient to separate (6.22) into two parts;

B = B ) + By () " (6.23)
B = 1‘5—- Ldx j; q’y}d/ o) - E m-’-"-f",l‘;'m . (6.24)
By (ig) = £2- f d f dyfdzcr(z) E(?l) . ;‘i‘,’_r) . (629

If we expand the integrand of (6.24)in powers of z about z2:=0, we find that only the term von-
stant with respect to z contributes to B (xg) less than quadratically in powers of (ka). Accord-
ingly, retaining only this term and letting o5 be the value of o (z) at 2=0, we have for (6,24)
to first order

) MHor E r T ' {02' ’0 y)}
Bty = B [ [ @ T xu)’ro(wyo;)’ﬂ&}‘” {xy) . (6.26)
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Note that retaining only térms up to first order in (ka) requires us to disregard the effects of

variation of o (z) over the amplitude range of the hottom feature. Making then the substitu-
tions

u = (x—~xg) cosd + (y~yo) sind 6.27

v -'Q--yo) cosf — G—xo) sing (6.28)
Ug™= Xg COSH + y, Sind i 6.29)

we get from (6.26)

B = worpEoa e (1kuo)._°j= du T & (0,20,u 5ind + v cosh)
% ' . el - 00

(W vi4zd) T2 exp (tku) (6.30)

from which intogration over v 'gives, by use of symmetry and equation (3.30) of chapter 1

mp an (0,29,u sing) | .
By i) = LZ2ER o f du == e k) (6.31)

This integral Yields easily to contour integration, giving for zg>0 (the only region of practical
interest)

B Gio) = Ve paoa Bna expkug) exp (—ka) (0,1, 5ind)

(6.32)
We find it convenient also to further separate By into the parts
By (xg) = Byy (xg) + Bypy (%) + Bipa (g} (6.33)

where Byy is concerned with the uniform component of (6.21), Byp, with the perturbation

term in Ky, and Byp, with the perturbation term in k3. Byy has already been ovaluated in sec
tion 2 of chapter 1. For Byp; we have

By () = LR EX P o g :f' & [ dy] b (6.34)
o0 g %) e ) ‘“"‘“’s";f;_ L
:E.}j L - Using the substitutions (6.27) through (6.29) together with the definitions
B  B=R o+ sing (6.35)
D =P cosd — & sing
A '
Y

(6.36)
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',?é " this becomes

Byp (7)) = fﬁi’£—°%——"—‘-’~‘-’s—’?exp (~2kd) exp Gikug) [ v [ av f d 6.37)
. . - —~a0 —ve 0

Y . o Mu=iG-z) —v(@ - ) ‘ ]
g;:\ | X o(z) exp Qku) exp (@) v Gz Ve Lo !
§ ' [ntegration over v then gives = = = ;
iy . :
AR —_ e . . ' . . i . ,

L B Gy < kA 2: X 08 oo (~2kd) exp Ukug) 9 6.38) ]
ol - o (2)exp Gk exp (kz) ' . o .
3 ”_L"“z“’ u + i(z=2y) '
:1 which yields readily to contour integration over u to give . | :
.‘ Bipi(xg) = —uoZua k x cod exp (ikug) exp (~kzq) 9 - 639 X

min (z,4) '
x fo o (z) exp{~2k (d-2)} &

| s }
g '

For Byp; we have

S L

: _ !
~ . uoboa k xcod F T ]- : N
B = = [ [ [dr | . (640) A
- X (Ocg i
. X o (z) exp Uy %) exp k) 8 IEDX D) 3
.’3: ‘ ' ‘ |xo~%| v
_ ‘ 4
3‘ which by a similar process reduces to I
p! , : N
M Bypaxg) = poboa k x cosh exp (ikug) exp (—kzg) § (6.41) :
ot X ‘Z o (z) expl—2k z—z2p)) ¢z .
3 min(20,d) g g
W
3 For the special case in which the electrical conductivity of the seawater has the con- ‘,-
} . stant value o¢ throughout the ocean, over the depth range 0<zg<d the expressions (6.39) and N
3 (6.41) for Byp and Byp; respectively become i
N
- Bypi(xg) = —poooEoa x cosd exp (—2kd) exp (ikug) sinh (kzg) ¥ (6.42) o
|" ) )
. Brralxg) = poroEou x cosd exp (—kd) exp (tkug) sinhlk (d~zg)} b, (6.43) E
l' g
I; * .
L) "
h
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: :‘.3 . and over the depth range zo>d they become ' '
[ 1 ' —_ - :
: ? : Byp1(xg) = ~'4 poroEoa cosd exp (kug) exp (=kzg) v (6.44) -
. j . © Bplkg)=0 . : : (6.45)
.- . :
,'!,' . For zo>d, the total' field minus the uniform component By, derived by adding together (6.32) _ ]

and (5.44), is given for a single term by

By (ep) = Yh uoooEoa exp (ikuo) exp (—lzq) sind (cos0 sin8,i) . - . (6.46) .
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- - 6.2 Application to two-dimensional bottom features

If we represent a two-dimensional bottom feature in the form

o ".*‘- ‘ - ) ,
' % f { (o) = f a (k) exp (ikug) dk . 6.47)
. 'T ‘ - - S .

| where the a(k) for positive values of k a:¢ the coefficients for terms for which .“Lzr' €0% %—,
_ f - and the a(k) for negative values of .k-are the coefficients for terms for which @ is in the oppo-
) ; '. site direction, we then havc for B for >0 '
‘."1 L]
K Bs (xg) = Y porofo | § .{‘; le (k)exp (ikugh+a (~k Yexp (--ikug)) exp kzo) dke  (6.48) .
3 ' - = : o
- + 1 sing 2 _{ la (k)exp (lkug)—a (~k )exp (~ikuo)lexp (—kzo) dk )
. " I ' .
i For 0< d < zq we have for Byp, and Bjp;
N . :
o) g .
'-_, : Bypy(xg) = ~poooEq cosd (—sind,cos,0) f (@ (k)exp (ikug)+a (~k)exp (~ikug)) (6.49)
o3 , , : 0
., ' exp (= 2kd)sini (kzo)
W R =7
‘15;:'. , - .
W Bypa(xo) = uooroEq cosd (~sind,cosd,0) f {a (k)exp (tkug)+a (—k)exp (~ikug)  (6.50)
N ; 0
™

, exp (—kd)sinh{k (d—z¢))

: }g E ' X T—exp (= 2kd) d
- _‘ '

and for zo>d we have for Bjp

Byp (g) = Bipy(¥g) = 14 poaroEy cosé (—sind cos8,0) [ . (6.51)
0

MR

.
5, <@

Lk

% (a (k)exp (ikug)+a (—k)exp (—ikug)) exp (—kzg) dk

g

o
&$'. :
=

The boltom features to which this method is most easily applied ate low rilges and

. - " shallow trénchcs, which may be roughly approximated by a Gaussian profile of the form

-z,
4

Lt

A

2!

2maRs

_-_

Llug) = A exp[- uf ] , (6.52)

—8
4
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where A is positive for a ridge and neyative for a trough, and « is the efféctive haif-width of

the feature (scz figure 2.2} to properly satisfy the condition (6.18), a should be somewhat

larger than A. If (6.52) is expressed in the form (6.47), then we have for a(k)

, ' - Aa - g.ici ' A
ak) = expl " I (6.53)

" When expression (6.46) is adapted to bottom feamres expressed in the form (6.47), it becomes

'E;-(.\F;) =t pgroFod {sind (cosd,sing,0) 1, (xgm) — sind 2 I5(xp,e)) - (6.54)

hxga) = 47! ,[ la (K)exp () + a (Ve (k) exp (=kzo) dk 655

'I;(;I,,a) ~ A-‘“{ {a (k)exp Uikug) — a (—kdexp (~ikug)} exp (~kzo) dk . (6.59)

‘Substitution of (6.53) gives fo;' Iy and I

I (xg) = 72% ‘!; 9:‘(9[ - a_’:i —zok l cos (kuy) dk 6.5M

e fa a’k?

I (eg2) ) -Ji; _{ exp( 5 zok ] sin (kugo) dk (6.58)
These integrals ure dealt with as Fourier cosine and sine transforms in Erde’lyi et al., 1954, v. 1
(sec. 1.4, eq. 16, p. 15 and sec. 2.4, eq. 27, p. 74), and have the solutions

I10cg) = 1A Lf (x.2) + f- G ) _ | 6.59)

Iixoa) = 1/2{f1.(xg0) - f- (o)) : . (6.60)
wherel

S+ (ow) = exp(s?) erfc(s,) | 6.61)

I BV R . (6.62)

S (egue) = exii(s2) erfe(s”) ‘ ' (6.63)

o= B >0, z5d (6.64)

with the function erfc (x) biung defined such that on the positive real axis

Y ¥
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FIGURE 2.2

DMustration of the parameters Jescribing a Gaussian ridge ar trough on the ocean floor, as used
in equation {6.52). A is the ridgc height (positive for a ridge,.negative for a trough), « is the
half-width of the ridge, 1 is the perpéndicular distance from the ridge axis, and { is the vertical
voordinate of the ridge surface ag a function of .
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erfc(x)—-%rr fewt-ar . By (6.65)

Note that £, and f.. are complex con&ugatcs'of cach other, and that therefore both (6.59) and ‘
(6.60) will always be réal-valued. The integrals /, and /; are plotted in figure 2.3 for the special

cases-of (afzp) equal t0-0.2, 0.4, and 0.8, for values of (ug/a) ranging from 0.0 to 6.0;.1; is
symmetric with respect to o, -andllz Is antisymmetric with respect to uo. Expressions found

useful for the evaluation of (6.61) and (6:63) were the formulas 7.1.5 on page 297 of

Abramowitz and Stegun and 7.1.23 on page 298 of same, the fotmer. being appropriate for small
absolute values of the argument and the latter for large values; it was found that if 10 terms

were retained in. the latter expansion then there. was a region. of overlap ot’ sansfactory size in _

the z-plane where neither of the corresponding expressions for exp(z2erfc(z) diverged and
both gave the same value to several 'signiﬂcnpt places,

As a practical example, we consider the case of a submarine canyon on the cominemal

- shelf. We sssume an electrical conductlvity for the ocean of 3.3 S$/m, and as a calculahonal

convenience we consider the specxal case in which the feature is parallel to the inducing EMF

" (such a feature running perpendicular to the inducing EMF yields a zero anomalous magnetic

Lt.“rq.. v, L4 PR TR W O T ) o v VAN Ca ™ e Ul W e U M 1 NG & €0 e ™ i W™ e Lt Lt T M, M YN W ey s
e N T A N e o D T T N o A Uy o L e vt

fleld above the ocean surface, although an anomalous fleld is present below the surface). Also,
in order to satisfy the approximations made in deriving this method, the feature must be some-
what broader than it'i; deep and somewhat less in vertical dimension than the depth of the

ocean. We take the value of the inducing EMF to be 1.0 uV/m, a reasonable value for an ‘

electromagnetically quiet day. The submarine cariyon extends to‘a depth 20 meters below an
otherwise level ocean floor at a depth of 100 meters beneath the ocean surface, and has a Gaus-
sian shape with o standard deviation of 80 meters. The anomalous magnetic field due to the
undersea canyon is plotted in figure 2.4, normalized against 'the spatially uniform magnetic field
calculated from equation (2.5) for such an ocean and such an inducing EMF in the absence of
any bottom feature; this field is — 2,07x 10~19) tesla, Note that while the anomalous field is, at
its strongest, no more than about a tenth the strength of the uniform field upon which it is
superposed, the spatial gradient properties of the anomalous field should make it easy to distin-
guish from the uniform background. .
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FIGURE 24

The anomalous magnetic field components B, and B, induced, at the sea surface over a subma-
rine canyon incised paralle! to the x-axis into a level seafloor, by an electric field running paral-
lel to the axis of the canyon, as given by equaticn (6.53). The field components are normalized
against the reference B, field which would be induced by the primary electric field in the
absence of the canyon, with'a completely level seafloor. For this example the ratio of «, the
canyon half-width, to d, the depth on the levél part of the ocean floor, is o/d = 0.8, and the
ratio of canyon depth to water depth is 0.2. The distance y is the lateral distance from the axis

of the canyon,
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. 6.3 Application to three-dimensional bottom features ‘ .
el Let us now suppose that we have a three-dimensional bottom feature whose shaps is '
%: given by the function { (x,»), which we write as a Fourier transform;
ﬁt: | | ) | e
y. (l o L - )
B! ...‘::, » . , C(x.y) ‘. f dkx f dky a.(kx |ky) pr{[ (kxx+kyy)] . " (6066)
gﬁg o If the du‘ection of positwe x is chosen to be parallel to the uniform current- inducing electric
e field within the ocean, then we can write
W - \ ' :
' ke = K cow , kymksing , kiw k24 k2, . (6.67) .
A . Ny
; 2 where k is a positive real scalar, which will transform the ‘Cartesian coordinate frame in which
i‘} ' (6.66) Is expressed into the cylindrical coordinate system in which (6.46) is expressed. Equa-
g _ tion '(6.46) is the expression for the anomalous magnetic field By (%g) above the ocean surface
& . due to a bottom feature given, in Cartesiar coordlnatas. by a expl/ (kyxytky,yo)); as (6.66) is a
‘_; ~ superposition of such terms, we thus have for & (%) the anomalous field above the ocean sur-
§$ ‘ !‘nce due to the bottom feature { (x,y)
Ty _
o, By (®) = ',‘"“'?E" i dk, _J:. dk, A (kx k) exp{i(k,x+k,.y)? exp (—kz) (6.68)
o ' ' ' \
W IR
v it k‘ !
R or, in cylindrical coordinates,
R |
ny puoooEy T .
u B = S52L [k ak [ d6 a(k cosd k sing) - 6.69)
Py 0 0 .
o ' y
-,{:{ X explik (x cosd + y sing)] exp (~kz) sind (cos sind 1) )
s
pr

In cases where {(x,y) Is cylindrically symmotric, a (k cosd .k sing). is a function of k
only, and judicious use of thc~identity'

s &,?,

k 2 Jolkp) = 7 d8 exp{ik (¢ cosh + y sind)} |, ple x? 4 y2 (6.70)
. 0

s

allows (6.69) to be written in the formn N

'y

=
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ﬁé. |
W , - _ 8%, '_1.. 8 -1 8
i f(f) wuov@Eofka(#)exp( kz)[ W ooy K Byl Tk By 6.71)

.-;1‘ , o X Jo(kp).dk- ;

.‘-"-,‘,n.‘l | | | | from here, use of the standard Bessel t‘uncti.on a;ecurrenc'e relations gives

Hon-- wuono:‘: kl-a(k.)l e k) [ 2 1) 2 Jy(kp) - & Hiko672
f} J;(kp)] dk

' * 1 : . , | If the bottom f‘eutu;'e has the Gaussisn form

() =4 ex;{ if%",ﬁl l, -_ | (6.73)

;" ;"n _ then we have for its Fourier transform

R a(k..iyi- %:z exp{ (k"q )] A“ p[ “;"z]~a.(k)‘ ' (6.74)

s

3 }a’.%?ff

Z

and (6.72) becomes

PALEE “'w“g‘”‘az I‘k exp

-&2"—'] opk) 675

e x| 2 5oy, & hyke) = =L 3, kp) L L 21 (k0) | 4
n Ipz 2( p) Pl, 2( P) kﬂ l(kp) p l( P) k )

- @ . which Iwith the substitution
@ : vee kp . (6.76)
o ‘,(n N E
ﬁ ‘ . turns into
. , .
6 e ‘—‘:‘i’—%-j-‘;-‘—-?-.- [ f;— L&a) i—,— L) = (R ) f lz(i',a)] , (677

A ' Whel‘e

L) -_[ ox '— ol v ] exp‘ - vl Jiw) dv (6.78)
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- 2 2 S
l;O?,a)-_{ v expl— i:-; lz-l exp[— -g- v ] L) dv (6.79
and
l,()?,a)-{.w ex’b[— -ﬁ-:— -Vi-] exp[— “~p ] Ji(v) dv . © (6.80)

. These integrals may be straightforwardly evaluated in the two regllmes'p << a and

p >> a. In the first case, the Gausslan in the integrands has gone to virtually zero while v is

still very small; accordingly, if the Bessel functions in the integrands uré expressed as power

s'erie_s_ expansions, only a small number of terms from each expansion'are required to ade-

quately approximate the values of the integrals, The basic integral for these calculations Is
2

S, ® p)nf W exp[ %3- _v_}] exp[ - £ vl dv (6.81). '

= {n)) [ 5— ]"'” 'ﬁXPl f&‘; ] D.(uepy2/at)

(Erde’lyl et al,, 1954, v. 1, sec. 4.5, eq. 24, p. 146), where n Is a nonnegative integer and the
D, (x) are parabolic cylinder functions (see Erde’lyi et al., 1955, v. 2, sec. 8; p, {15), and the
appropriate power series expunsion for Bessel functions of integer order is

Jnu)'zmﬁ?—l

Accordingly, from the integral representations /4, /3, and I3 we have

2k ' ! (6.82)

- (~1)k . v
nCte) .gzm'(k!){(k-l-l)!} SunWa) (6.83)

oot V4 :
G a) = Eazz"“(kz){ml)'l Susal®a) (689

and

(‘_l)k y d
5LH(Ra) - B PETED (D] Sur®a) (6.85)

To generate the necessary parabolic cylinder functions, we have the recurvence relation

Dy (x) = x Dy(x) + n Dyy(x)= 0 (6.86)
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(ibid., sec. 8.3, eq. 14, p. 119), and the functions

D_l(x)-—\/-f;cxp
D_(x) = expl—2= -'l-.-\/-’-"-x expl
| P 4 . ) p 2

. 2 :
-OXD[""'x“" "“XD-](X) )
where erfc(x), the complementary error function, s as given in equation (6.65) of the last sec- '

tion, Expressions (6'.87.)' and (6.88) were found by comparison of (6.81) for the cases =0 and
nw=1 with the equivalent expressions in Grobner (sec. 312, egs. 10(a) and 10(b), p. 57).

x3.
4

erfc(:}iv) , ' 687
and

“erfe (fﬁ\,“) } : | (6.88)

From (6.81) and ('6.86) we have the recurrence relation
Sibza)= (n=1) (V8,06 20) =~ ED)51bza) (6.89)

and from (8:81) and (6.87) and (6.88) respectively we have

Solpz ) = lﬁ-].\/—';i exp[—i-’?] crf:{vgz ' | . (6.90)
and '
2
Silp,r ) - [ﬁ-] 1- \/-3; _&z_ exp[-iz%‘] erfc['v'%;] (6.91)

] .
-3-] —[ﬁ-‘;—]sowm L }

In evaluating the complementary error function, the approximate exprassion (7.1,26) on page
299 of Abramowitz and Stegun, good to high precision anywhere along the positive real axis,
was found particularly useful. '

In the limit of p—0 it is seen that Iy, /5, and /5 all vanish, however, in the magnetic

field expression (6.77) which uses these values p appears in denominators taken to various
powers, and it turns out thet this expression does not vanish in this limit, Referring to the
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expansions (6.83), (6.84), and (6.85), we insert them into (6,77) and discard any resulting
terms in positive powers of p, to get '

7S za) - E—'-(%’-z{-ﬂ.. (6.92)

Aougoof
;Lnsﬂ.;a)-" 2 4 & O 4p4sl(Pszva) 404
'pxj“sb@&z’d)l Ty

where the indlcate_d pawers of p in the denominators cancel the p-dependences of the accom-
panying S, (sec (6.81)); since.x and y will vanish with p, this reduces further to

, no A
i) = S|

At the other extreme, where p >> a, the value of the Gaussian is still close to unity
by the tirne that v is large enough to make the Bessel functions for practical purposes vanish; in
this case we expand the Gaussian in a power series about zero, and integrate termwise, The
basic integral is

Ly ®) -'-“{ w expl['--~ -g- v ]‘.l,,. w)av , | (6.94)

which for n and m' both nohnegative integers and n 2 m is

Ly ) w (=1)" -Q’p”;"l” P,:"[-‘-;--i-] , 6.95)
B-[1+~§]V’ o (6.96)

(Erde‘lfi ot al., 1954, v, 2, scc., 8.6, eq. 6, p. 29 and Erde’lyi et al,, 1955, v. 1, sec, 3.4, ¢q. 17,
p.144), where the P*(x) are Legendre functions of integer degree n and integer order m (ibid.,
gec. 3.4, p. 143), The Gaussian series sxpansion is

d’ Vi (““1)" M ;
oof - 25 - 5 L0 [ 2 o 690

giving for Iy, 15, and /

$ 1 a)®
Lpza)= 2*(kl)l ] Luyapz) (6.98)

NG DR B AL SRR A A T A S T A O AR
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% " I 2 .) = 2 L8 —-uL (0,2) (6.99)

S P2 % k) u+11027 .

1 e .

e and

i Lpza)= E L0 L2k+l z(P,Z) : (6.100)

$p Expressions for Lo, and L ; are required by (6.98) and (6.100) respectively, but are not given

_";" by (6.95); from integral tables, these are

L

1 z

J L Y= l—== - 6.101

| o1l B | 6.101)

_' R (Brde'lyl et a'l‘.,‘1954, v. 2, sec. 8.4, eq. 6,.p. 19) and

‘ Y Co | 1z, 1z 2 '

. ‘ L w2422 |12 . 6.102 |
w ‘ ,M(u) l ﬂp][ ﬁP]. (6.102) |
-;"' | (Erde'lyi et al., 1954, v. 1, sec. 4.14, eq. 2, p. 182), where 8 is us given by (6.96),

@é Useful recurrence relations and bootstrap functions for computing the Legendre func- * *

" tions required by (6.95) are

- _ o (n—m+1) Pty (x) = (2n+1) x P(x) = (n4+m) P, (x) : (6.103)

8 and '

§

) (1= x)VIPP+i(x) m (n—m)x PP(x) = (n+m) Pp; (x) | (6.104)

*N
-'& ] (Erde'lyi et al,, 1955, v, 1, sec. 3.8, eqs. 12 and 17, p. 161), and

% P§(x)m 1 (6.105)

Z§E: and | .

N \ PP (x) = x | . (6.106)

PRy -

ﬁ (Abramowitz and Stegun, eqs. 8.4.1 and 8.4.3, p, 333). Note that P"{(x)=0 for m>n. Addi-

r ' ' tional useful functions are
. P}(x) = = (1~x}% (6.107)
i P(x) = (x2=1) (6.108)

P (x) = =3x (1=x?)* |, (6.109)

3 ‘
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and
Pi(x)=3(1-x?) . (6.110)

Reference to (6.95), (6.103), and (6.104) gives the recurrence relations for L, , (p,2)

B*La,1(p.2) = (2n~1) (z/p) L1y 2) = n(n~2) Lpogy (6.111)
and

Lyalpz) m <n+1)L,.-.1,t‘P,2) - @/p) Lyab2) 6.112)
and some useful bootstrap functions, from (6.95) and the previously listed Legendre functions,
are '

Ln(a.Z)--'-s-,- (6.113)
and

Lyifpz) = -E';-‘- ; (6.114)

note that the recurrenco relations (6.111) and (6.112) are invalid with the use of bootstrap
functions for which m> n, making it improper to use either (6.101) or (6.102) to start them
off. ' :

In the limit of p~os, the integrals (6.78), (6.79), and (6.80) reduce to

L=[s0dv=1 , (6.115)
-0
L=[vimav=1, (6.116)
) .
and
L= [vnmav=2 ; (6.117)
0

these integrals ure special cases of Lo, L1, and Ly, and their valucs were derived from the
appropriate expressions in the text (cxpressions (6.101), (6.113), and (6.102) respectively) by
taking the appropriate litnits, Substitution of these values into (6.77) gives

)2
ntAm)-——""“E"A“ [%.Q-L—-l.l] . 6.118)

p? p p
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Computation of the elements of the tensor gradient of the anomalous magnetic field is
.¢xpedited by the fact that spatial derivatives of the membets of the sets of the S, and the L, ,, -

» . are also members of the respective sets; from the integral expressions (6.81) and (6.94) we .
;“ nave ' \

L’ ] ¢
e L5620 = L Snbred+ 5 Subra) (6.119) B
g : dp p? p’ : ?
by - S . ‘

3 FRUEEEE O SN | (6.120) &

T lmbza) = Elinbra) - (6.121)
.' " and :
g 8, | 1 | . :

; B lmbza) == Linlra) . | (6.122) )
! , »
Modification of the routines used to calculate Iy, /5, and /; for the calculation of their spatial
"Z; derivatives should be fairly straightforward, ' ‘
e A practical problem in the use of the recui--nc. relations (6.89) and (6.111) in the 3
,'u' calculation of I}, I, and I, is that for many choices of p, z, and a the series diverge, L
5.'"’ apparently as a result of numerical instability; where this occurred, investigation of the rroblem ; _

'.} showed that successive terms in the expansions for Iy, I, and /; first decreased in magnitude '; .

: 10 values very small i comparison to the magnitude of the first term in the series, ang then "; :

' increased without bound. It was found that if the expansions were truncated just before the i
,,a'; point of divergence was reached, the agreement betwen‘the squivalent series iu the §, and the' ':

r o - Ly in their areas of mutual validity was good to scveral signiﬁcant places, suggesting that this 'P _
;E procedure is a workable solution to the divergence problem. However, in many cases it will be y

desirable to get at least a rough estimate of the number of terms actually requiréd for a result

\‘ '

~of a given lovel of accuracy, nither to avoid. computing unnecessary terms or to determine

)

ol

whether or not a seriss expansion is invalid due to divergence before the requisite number is

reached. Both methods are based on the series expansion in ascending powers of its arguinent

2

: of a factor in the integrand of an integral, the justification being that another factor in the - )
integrand will have effectively vanished before the argument of the expanded function becomes
,_ large enough to invalidate its series expansion. To produce a series truncation értor estimate : $
. for a given choice of p, z, and a, one first truncates the integration at a selected cutoff point, N
L and estimutes the error introduced by disregarding the remainder of the intcgral; then, one cal-
'3 culates the difference at this cutoff point betweern the value of the factor tn be expanded and .
- .
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the value of its expansion, truncated after the specified number of terms. A reasonably reliable
upper limit on the error produced by the series truncation may be arrived at by making the con-

~ servative assumption that the percentage discrepancy between the facior value and the value of

its }expénsion is the same over the entire range of integration from zero up to the cutoff point,
and the total error is calculated by multiplying this percentage error by the value of the trun-

cated integral based on the truncated seriec expansion and adding the result to the estiméted.

error from the truncation of the integral, This process involves some tradeoﬂ‘ decisions, in that
selecting a greater cutoff pomt will decrease the integration truncation error but increase the
scries truncation error unless a larger number of terms is used in the expansion.

As an example, we consider the case of a Gaussian hill 20 meters high end of width |

such that« = 80 meters, rising from an otherwise level ocean floor 100 meters below the sur-
face. The magnetic field is computed at the points of a 5% § _horizontal' grid at the ocean surface,
centered‘directly over the peak of the hill and with a grid spacing of 160 meters, with faces’
parillel to the direction of the indup‘ms EMF. The water ‘depth is not untypical of a continental
shelf, and underwater features such as a reef, a dune, or a highly eroded suomerged island
might have ‘dimensions on the order of this Gaussian hiil. A uniform inducing electric field of
1.0 n ¥/m in the & direction is assumed, and the ocean’s electrical conductivity is taken 'to be a
uniform 3.3 S/m. Note that most of the points on the grid are in the intex’mediaie. region
between p << a and p >> a; in this region both of the series expansion schemes given above
should be usable, 'and in fact for this problem there was a narrow range of values of p where
they gave the same values for /,, I, and /; to several significant places. However, difficulties
encountered suggest that, as a safety precaution, for computations with any given combination
of « and z one should compare the outputs of the two algorithms over the range of p with
which one is concerned, i order to establisti whether there is in fact a range of cqisivalent out-
put, and, if so, exactly where it is. The results of the calculations ara presented in table 2.3.

The scaling rules discussed toward the end of section 3 may be used with these resuits
to derive ths tﬁagnetic values at the ocean surface for any situation where the relative dimen-
sions of ocean depth, hill height, hill width, and grid spacing are the same as in this example:
Also, the field values are directly proportiohal to both the strength of the inducing EMF and
the electrical conductivity of the seawater. According to equation (6.77), the field values are
directly proportional to the height of the hil!, but it should be recatled that this equation loses
its validity if the height of the hill approaches either hall of the ocean depth or the width of the
hill.
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x -3200m .-1600m 00m 1600m 3200m
y=3200m B, 085 0926 0000 092  -0.850
S g’, 0153 -0377 -0851 0377  0.153
0884 172 2357 1732 0834
y=1600m B, 092 1548 0000 - -1.548  -0.926
B, 1011 .1205 1044 1205 1011
B 0866 2666 -4720 -2.666  -0.866
" y=00m B, .0000 0000 0000 0000 0000
B, . 1748 3788 9569 3788 1748
) B, 0000 0000 0000 0000 0.0
-l._ .
g ym—-1600m B, 0926 .-1548  0000. 1548 0926
B, ' 1011 1205 1044 1205 1011
; B, 0866 . 2666 4720 2666  0.866
‘fv ) . .
- . - _y==3200m B, -0850 092 0000 092 0850
X | - B, 0153 0377 -0851 0377  0.53
B 084 1732 2357 1732 0884

-,.‘,.L, :

Y
e TABLE 2.3
:,2 Fieid values at the ocean surface over 'a submerged Gaussian hill as described in the text on
b page 67. The field values are in units of 10~ tesla, and the origin of the coordinate systern for
e position on the surface is on the vertical axis of symmetry of the hill. In the absence of the hill

the uniform field at and above the surface would be B =—2.07x 107199 tesla .
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7. Interactten with the‘Eanh's magnetic lield of seawater current flow

An electric current will be generated by the flow of seawater through the Earth’s riag-
-netic field, and this el,ec_trical current will in turn generate a magnetic field of its own. As well. '
as the magnetic anorralies associated with the flow of tides and steady ocean currents and with
~turbulent water motion, which are ouiside’ of the scope of this sfudy. there will also be
snomalies maocmed w:th the diversion of water flow over ths urean bottom by topogruphical
- features of” the ocean ﬂoor. Unfortuaately, the flow patterns of real, viscous water about even
very simple shepes ate dii‘ﬂcul_t to model, and the subject has in general not been well studied;
acc_drdlngly. ¢ven though this effect is. probably significant in ccmparison with the others dis-
custed in this report_.'it. tannot be covered here because the available data is insufficient even o
estimate orders of iggritude. For some examples see Cox and Sandstrom, 1962, and Osborne,
19¢0.
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Chapter l:II

Magnetic Anomalies Induced by Emnts within the Ocean

. 1. Tntroduction

,;.}j_ o ' ‘  Oceanic fronts are regions where dissimilar water typés abut one another, and they can
. , | ‘ exist as.stable conditions because the electrical conductivity of seawater Increases bath with
E% ) L . increasing temporature and incredsinig salinity, whereas the density of seawater increases with

”incre'aslns salinity but decreasing temperature, As a result of thig, two bodies of water can lie ‘

& - adjoining each other without a density contrast but with appreciable contrast in electrical con-
.?’f L ductivity, and fronts with their main contrast in the vertical may have density as well as con-
Wi . ductivity jumps.’ .The causes of temperature and salinity variations lie ultimately in air-sea
N o . processes such as precipitetion, evaporation, insolation, -and long wave back radiation, but the
o - © " actual distribution of water types within the ocean results from dynamic processes which tran-

I sport regions of water that have been subjected to these influences in different propottions.

Some of the more common of these dynamical processes derive froms gravity waves, In

{,’- ‘ this instance, we regard the redistribution of water types in these so-called internal waves as a
| ,' C form of“froniarj creation; these fronts have time scales in the range from the inertial period to
i the Vaisala period (Eckart, 1960). Other processes - currents and turbulence - can lead to
§ ' longer timw scales, Internal waves are ubiquitous in the ocean but have local intensification in

shallow water (Gordon, 1977). Since the vertical structure of the ocean is always one of

b4 increasing density with depth- (usually ceused by decreasing temperature), internal wave fronts
] are always present. The more persistent fronts where density remains almost constant demand’

_ ,§ the close proximity of contra;ting salinity/temperature water types.

q_': This chapter deals with the calculation of the magnetic anomalies associated with the -
| electrical conductivity properties of oceanic fronts. Section 2 uses & perturbation approach to
‘5‘ derive oquations describing the alteration of the electric field within the ocean by the presence
4:' of a front, and discusses the calculation of the magnetic effects of the front by use of the solu-
. tions to these equations. Section 3 deals with solutions to the electric field equations for a spe-

cial case of particular interest, section 4 illustrates the practical use of the work of section 3, .
and section 5 gives two different methods for a general solution for the electric fieids in the '

Ay
s

’ : perturbation limit, one being the more' convenient for analysis of Fourier transformed data and
the other being the more suitable for the study of localized fronts in real space.
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2. Baslc equations

2.1 The oceanic electric fleld . -

-
E‘% ;o ~ We start by supposing that the front exists as a steady state condition; making the
;::: ' mn;net!c field associated with it constant in time. From Max\vell's equations we then have for
N | E the electric field within the ocean | -
;g”; | UxE=0, 1 @n
'f:; | - which implies that ‘may be expressed as the gradient of some scalar function ¢;
;£~' | E-vs . -  ‘ . @), -
-., o I " ForJ the electrical current density distribution within the ocean we have '
. Tme® , . | 3
E:‘* : " where o is the eleotrical condu'ctivitf distribution of th§ seaﬁter, and | | |
ﬁ-" o w0, ' | 2.4)

another consequence of the steady state assumption, Combining (2.2), (2.3), and (2.4) givas
V@Ve) =0, - ‘ Y

or

o V% + (Va)(Ve)=0 . S 2.6)

e

AR B

For fronts in the ocean, the variations from the mean electrical conductivity of the frontal
region are seldom more than a few percent of the mean conductivity, suggesting the use of per-
. turbation methods in solving (2.6). Accordingly, we write o, which we may take as a given, in

the form :

e
=V

SEErTRE (i

o®@) = oolz) + € 0y(X) . Q.7

i

and ¢ in the form

. ST = dg(¥) + € & (R) + €2 () 4+ 0, (2.8)

=t

where € is a perturbation parameter that will eventually be set to unity, and o is a small per-
turbation on the mean conductivity o g, which is taken for mathematical convenicnce to be hor-
izontally stratified, Substitution of (2.7) and (2.8) into (2.6) gives
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X

n

00 Vibo+ (Voo (Ve o Q9

4

+elog Vi + 0| Vi + (Vay) (Vo) + Vo) Vo)

LU + oo Vibr+ 01 Vi1 + (Fed (V69 + (Vo) (76)
& : ' T _ ‘l.leq'uiring that (2.9) hold for all choices of the value of « yields
953 e Vit Ve We =0 (210
R avsiwed 60+ 01 Vo + (Vo409 = 0 @1
D : 00 Vi1 + (Vo) (Vi) + oy Ty + (Vo) (Vg)=0 , @12
gﬁ: o 3 ard, for higl;er orders, | |
.. I V8401 Vit (Vo'l) (Vén)=0 . .19
: | Maklnz the deﬁnltlon '
'._ P ' @ ?ol(zT 1‘%;’1- 214
:Mi . gives from tﬁis : | .
5‘5? | Ui+ S@) 2= 0 . 2.19)
" Vg + f(z)s-w,-;,m (2.16)
é&: ' where o
X } .
| ‘;v',,;:( | E 2,62) = (v1C¥)f(z)_2c:(zV)q1C¥)]°V¢o ‘ ' @2.17)
B Y Vi1 + £ (2) 2V = py(X) | .19
i% where |
;’ 9y = lmce)ﬂz)saz(zo.crn -V«m._ Z;g; " (2.19)
o |
and
Vi, + £G) 398, = p, (7) X

2zns) )

7"7 ‘@
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o | poy= DD =T T g o) @
| Setting ¢ to 1, we have : T ' .
o (2) = ogle) + 0, . e
and | | o | | 4 |

WD =golD) 4 B 4G R  ew

AS |¢a| will be smaller than I¢;] by something on the order of magnitude of the ratio of
{max loyl} to lergl, it will generally be practical to ignore ull terms beyond ¢, in (2.23).

As an important special case, we suppose that

P G = Eox , (2.24)
‘5 - ‘which is seen to be a valid solution to (2.15); then, since dmgy if oy is uniformly equal to
; ; ' zero, in the absence of a front the electric field E t‘hroqghout the ocean is
i . .
: which we may take to be induced by some outside. source of EMF. If o is nonzero, then we
{ . have for ¢ from (2.16) and (2.17) j
3 . ' I
[ : |
‘ : t
. w2, ' (226
: Ey -90;(%) . | ,
E !' Pla) \ U'o(.'l) g ax . (2-27) 3
: 3 The choice (2.24) for ¢ is appropriate for virtually all cases of practical interest deﬂing with :
B fronts near the surface of an ocean. !
| |
| ;‘
X
q
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2.2 The Fourier transformed magnetic field

The Biot-Savart expression for the magnetic ‘field B due to a steady state electrical -
current density field 7/ is o

. o wy  TEX R .
5 LTl e o R | (2.28)
f " if we define
I - ﬂ ..z— | i

PRy (2.29)

we note that (2.28) becomies a convolution integral of the form’

. B = [ToxPem & (2.30)
| ' ‘ Defining the Fourier trti.ﬁsforqm CE,RE),and BE),
S | B&)-f &) eF¥ dk | @
1) = [ RE F*dE S X1
g wo
E - Fo)- f g@®) F* ki, Y
| we find that (2.36‘) is equivalent to |
CE = @ REXOE) . _ (2.34)
The cusrent d;nsity field 7 has the form
. I®=c® Ve® & | (235)
. | if we make the definitions
@)= [ L@ oF¥ K (2.36)
and .
60 = [ ®®) F¥ oK, 237

we find that (2.35) is equivalént to

RE) = [ i 2®=~E) o).k (2.38)
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An equivalent expression to (2.29) for B(X) is
Py~ L2 V[ ] Pl ¥R ; o .39)

some work with this expresslon shows that

W:‘)-Q-— (2»:)*J K U(k”) N | (2.40)
where |

- f—r“‘*a . . @41)
'giving for .34) |

eB- L UvBIEH .42
where .

L@~ FxR®  ew

-f (ka‘)t(ﬁ—")ﬂl?) e

If expression (2.41) is written in Curtesian coordinates, then use of symmetry about. the origin
reduces it to three sequential cosine transforms, which are given .in Erde'lyi et al,, 1954, v, 1
(sec. 1.3, 0q. 7, p. 11, sec. 1.13, eq. 43, p. 56, and sec. 1.4, eq. 1, p. 14); the result is

| um-% . x . 44

The current density distribution J} up to the first order is given'b).'l
Ji®) = 04(z) Vo) + Jf - | (2.45)
where o
Ji &) = 01 () VoR) + 0(z) Ve R) | (2.46)

the first term of (2.45) is unaffected if o) Is set uniformly equal to zero, whereas J; vanishes,
thereby identifying itself as the anomaious part of the distribution, The Fourier transform
C (%) of the magnetic field resulting from J; (%) is ‘

Z‘(k)-—- U@ £;®) ' (2.47) .
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L; 6) = [ (BxF) (5, F=F) 0ol + Somk) 0, () dR° |

oo(z) -f Zo() em' dk
o1 () = f: R) eF* ot
$o(¥) = f¢o® Gﬂ“r JF

-

810 = f.0,®) F¥ &

(2.48)

(2.49)

(2.50)

@51

2.52) .
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3, Exponential decline of the lateral mesn electrical conductivity with depth

N Let us suppose that oolz) the unperturbed electrical conductivity distribution of the o

N ocean goes as

g ; 1 doro(z) doo@) _ o ’ '
o S . wheré A is a constant, giving an exponential decline in o with depth. Then (2.15) becomes
. "‘“. " N
TR Vio+r oo, 3.2)
o .

i

! . for which (2,24) is sti!l a solution, and (2.16) and (2.17). become

Vi + A %" ~p ¢ o 33
where
| .
’ plw) - !0‘[.* 2 — VO’[' V¢o (3'4)

P o0

within the ocean and Is undefined elsewhere. In this special case, if ¢g and oy are provided,
then an analytical solution to (3.3) is possible,

Going to the Fourier transform domain, we define .
) $10) = [ ©,®) eF¥ iF | | (3.9)
I and

pi®) = PG FF G | . (3.6)

,. to avold ambiguity in the Fourler transform of pl(i') we set it to zero outside of the ocean.
, Making these substitutions into (3.3) gives

Q) &, (%) = P, (&) , (3.7
where
| Q&)= ~KE+irNED . . (3.3)
From (3.7) we have

- l(k) ’
V) -—— 3,
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whose inverse Fourier transform ¢,p (%) is a particular solution to equation (3.3). Equation
) )‘ f (3.3) with p; set uniformly equal to zero is solved by any term of the form ¢®* for which ¥ is
g | such that Q (k)=0. If we write X in the form ,
' ' ot . LS.
_' ' ‘ k = (kK ik) : (3.10)
g then (3.8) becomes .
§; : ,i \ _ Q&) = k*= Ak~ k§ (A.11)
:. ; (! ., ' .
Y - where
! kg = K2+ K} o (3.12) .

A,

setting 0 (k) uniformly equal to zero gives for k

AL /X |
k=da faeng (3.13)

Accqrdingly. we hive for the general solution to equation (3.3)

W =op® (3.14)

LRERE

- o
) J-s“-‘

+ Ak, k) exp{i(k,x+k,y)-k,4 z) dky dk,

i

2 S0

-
5

s .‘}.'

+ [ f Bk explithuxtiy)=ksz) di, uk, |

where k, is the larger of the two roots (3.13) and kp is the smaller; the integral term in A is
downward-increasing, whereas the integral term in B is downward-decreasing.

| EaRh e

If we suppose that A has the same value everywhere from the ocean fluor to the sur-
t face, then the boundary conditions on any solution to (3.3) are that 2.V =0 both at the ncean
bottorn and the ocean surface, which is equivalént to saying that there is no flow of electrical
current through either bottom or surface. This approximation is usually valid because the con-
ductivity of the seafloor, while variable, is usually far smaller than that of the scawater above.
From (3.14) we have that

t"
I PN
4

J Vi 2) expli Gx+k, )] dk, dky ‘ (3.15)

2V | (X) =

<:.'-.'-, f 5 g’

V ke ky o2) = R (e Ky o2) = kae 4% d (ke k) = kge "' Bk ) (3.16)
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- where
N o
.'N‘;ov " Rl by 2) = [ ik, ®p () " ak, GIn |
L a‘b: . C
it R : . |
‘gs o The boundary conditions at surface and bottom are seen to be equivalent to
R ““ » ' ; ’ I ‘ . |
ke ky ) = VU yizg) = 0 (19

. where z and zz are the altitudes of the surface and the bottom respectively, These represent.
two equations in A and B, which may be solved simultaneously for A_ahd B in terms of R at

; the two altitudes, A , _
R f .In some cases it may prove conirenient to minimize the maximum valué of loy] by
X i:i o constructing op from two different exponential curved joined together at some depth within the
N - ocean. If this is dune, then then the conditions (3:18) still apply, and there are additional condi-

tions at the interfacing depth, derived from the requirement that the electrical current dénsity
o . distribution be continuous across the interface; provided that o is continuous across the Inter- -
3 face, this is equivalent to saying that Vé, is continuous across the interface. We already have
_ in equation (3.15) an expression for the vertical component of the gradient; from equation .
(3.14) we have for the horizontal components

L )

T 1@ = [ [ 1Gky,0) Hky ky12) expli (o)) dy ©(3.19)
| R » H(kx,ky,i)-s(k,,ky¢)+e"‘"A (k,,,ky)+e-k"B(k,,,k,‘) , (3.20)
' % ; where
’ ';i'n.l S(kx’ky,z)-:[.‘blpa;) Mtk - ' (.21)

Let the lower reglon be called region 1, and the upper regh n be called region 2, with their
interface being at the altitude z;; our object is to find ¢, in the two regions by solving for 4,
and B in the lower region and A, and B, in the upper region. For boundary conditions we

F have
Vilke ky,25) = 0 (3.22)
v Vilke ky2p) = Violke ky \z) (3.23)
(ke Ky 2)) = Halky ky2) (3.24)
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” . 7 V](kx oky ,Zs) -0 v . : : (3.25)

N o giving one equation in 4, and B, one equation in 4, and B;, and two equations in all four
§ { , parameters. Although the process is cumbersome, theso conditions are sufficient for the unique
. . simultaneous solutions for 4y, B, 4,, and B,.

n.‘..:
.




4. Practical use of the method of section 3

The basic approach used here will be to first compuie the magnetic anomaly field asso-

ciated with a unit point variation from the mean electrical conductivity distribution oy, and then
use this as a Green's ﬁmction to get the field for an arbitrary variation distribution. Drawing
upon section 2.2, we have that if By is the magnetic field assocnated with a variation distribu-
tion o';, then its Fourier transform Gy is given by

GR--L OB LE , ' @1
- o

Vi) =5= - “2.

Ly®) =i E’xlf}(k') , )

where K} is the Fourier transform of Jy, the anomalous electrical current density distribution
associated with the vanation distributior.;

K& R @ e . @.4)
From equation (2.46). we have that

Fr @) = J5i®) + Jn) | 4.5)
where | :

i) = 18 Vo) | 4.6
and | |

T®) = agl?) Vo, 2) - @

with the Orh and 1st order electric field potentials ¢y and ¢y as defined in section 2.1, We
assume that @ is given by . ' '

¢oCi’) - Eo X (4.8)

s0 as to give a uriform electric ficld of Eq X within the ocean in the absence of a variation dis-
tribution, and that the mean distribution o is given by

oo(z) = W) oglzg) explh Gs-2)] 4.9)

1. 23281z

we) =1\ , otherwise

(4.10

e e I N NN e A BN A S e e T e e



82

~where A is a constant greater than or equal to zero, zg is the altitude of the surface of the
e ocean, end z, is the altitude of the ocean bottom. Assuming for the moment that .
H . i .
! |
3 R =8 ' @.11)
;ﬁ, ' where 8 is the Dirac delta distributlon.» written as
.",( ; )
l v [ ] L] '
" 88 = oy [ ake [ dk, f dky exp ~ET) @12
i » i )
A | we immediately have for Ky,
t' Eo - — ' '
KnE) = & —= exp(~ikxg) , (4.13) . .
a (2) o “
_fj; and hence
3
e Ln@) =1 fx8) =25 (2 Gy 2 CERD) | (4.14)
?A,‘ For ng we have that
’§ Ky,(") (2 yomel | T & J @ f dz exp (~ k%) | 4.15) -
"
.2 X W(@)oo(zs)expla Gs—2)) Vo, (R)
N ' , :
- if ®,(K) is the Fourier transform of ¢ (%), then this becomes
\'1 . ' , o '
«X] — —A :
.1 Ky (F) = "°(‘S)‘;’; (Azs) I ey k. @Gy k9 , (4.16)
=~ ‘ |
expli(k, =k, —i\)zg) — expll (k,'~k,—i))zg)
2 . k—k=ix
i
?1 from which we have
8 ~
- - . oglzg)exp (-rz5) ,
Ly = T (% 2) f (RTOT NN @17
bl: | oxpli Gk ==z ~ expli k=i )zs)
O k, '-'kx_lk
oy
\
‘
A9
3 \ )
)
:
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To determine @, we refer to section 3. From equutiqn (3.14) we have that

&) = 1 &) + A (K, k) 8le—iky) + Bk k)8 (k,~ikg) 41
whcfe

kyma+p , I . (4.19)

ksma=-B , . | - (4.20)

,-% Co : (4.21)

ﬁ--\/%—-b-k& ,B=>0 , 4.22)
where

k¢ = &2+ kP . : (4.23)
@, (k) is given by

. P.Gc‘) .

¢y o® : : | (4.24)
where .

Q) = = (k—iky) (ke~ikp) | (4.25)
and Py(k) is the Fourier transform of p, (¥) as given by equation (3.4), which in this case is

o WEEVEE

P& == B G Cexen Gs—2)] 426
accordingly, we have, assuming (4.11) for o,

PE) = — 1 ZEROI) k) exnpehzg) exp CR-5) “an

(21?) 0'0(23)
and
, Eoexp (\z5) . o _ exp (— ik xg)
Oyk) =i CrYgls) Sk W) exp (=rzo) Gt ity (4.28)

Reference to the boundary conditions (3.18) shows that A (k,.k,) and B (k, ,k,) are related to




&, through the matrix expression

Akak)] [ Rk 25)
Blked) |~V | Rlkeikyza) |

where

Nel

[ k.exp (—k,z,) ‘“kgm (“kpls) ]
D

—kqexp(~kqzp) . kqexp(~k425)

d=23—2

Rl ) = [tk @1p ) exp ki) dy

-

If we make the separation
B =L@+ BD+5E | (4.34)

. where the terms on the right side are, i’espectively. the terms on the right side of equation
(4.18) substituted individually into expression (4.17), we see that - '

' -\ - Ik .
B® mi ”°(”)”2‘1‘r’( %) @x 1) —E—ﬁ-‘f | (4.35)

x [exp{—i (k;+ikg)zg)} — exp{—1 (k,+iky)zp)] A (k, k)

and

aolzgdexp (~Azg5) k, — ikp
| Ky(K) =1 5 @xi)m

X lexpl~i (e +ikq)zs) — expl—i(k,+ik4)zp)) B (ky k)

The remaining integrals are easily evaluated by contour integration, giving

Ey
(21!’)3

Aexp (—ik,2g)

T kO ¥ gy 37

Lp () = &k (K x3%) expl—I(kyxotk,yo)) Wizg)
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(k= tkgdexpl—i (k, + tkp)z)

Bk, + ikg) e kgzo)
(kz - Ikg)exp{—l (k: + l'k,‘ )25} . .
- 8 + k) Pk |
L =22 2% Ex2) —ﬁff’m) lexpl—t Gk+iky)z5) — expleri G + Iy ) B8)

x exp{— (k. xo+k,y0)) W(Zo) Yy (ke 20)

and
1:;(7:‘)- E°:zk‘(k‘ 2)—%’%‘5—}‘% (4.39)
x lemplt Gtk )25} = expl=i G + legdzg)]
x exp{—i (kexgtk,yo)) Wéo) Ya (ke sky 20)
where

l ¥y (ke Ky J-o)] N [ kqexp (—kqzs)exp (—kpzo)

] (kx ;ky 20) kg exp (—kpzpdexp (~kqzo) (4.40)

We now integrate the terms of Ly derived above against oy (xp) over all xo within the
ocean to get an expression for Ly for arbitrary o',. If we define the transforms

Ty (F) = f dquyj'dm,cr) We) epE®) - . (441

(2 @) ¢

T‘ (kx.k )"" (2") A

&f o[ alomwe 442

x expl—i (kex+k,y)) exp(=kez ] -,

and

T (ke ky) = (2 Yol f dx}dy J&low W) (4.43)
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x exp{—! (kex+k,p)) exp(—~kg2) 1 ,

we find that the equivalents of (4.14), (4.37), (4.38), and (4.39) are

L?,(F)-l(l'c'xk)—(z—?—)-_.; T (k) (4.44)
| A Tr ()
(ks + ikyq) (kz + tkp)

Lp®) = Eg 2k (Kx3) (4.45)

_ k- tkq Yexp{—1 (k, + ikg)zs)
Qﬂ(k, + lkg)

) N (ky ~ Ikg)expl—1 (k; + Iky)25)
28k, + Iky)

Tﬂ (kx ,ky )

,TA (kx ,ky) ’

(k; — thy) . ,
L) = Ey %k (Bx2) BT ) (4.46) .

. % [exp{=i (k+tkn)zs) — expl—t (k, + Ikg)zn)) Z4 (ke ky)

and

(k, — ikg)

Ly(®) = Ey 2k (?.)(E)m

[ . (4.47)

x [exp{—i(k,+1kq)zs) — expl=i (k;, + ikq)z5)) Zy (ke k)

where

[ ZB ‘kx ;ky) I - N[ k’exp ('—szB) TA (kx ,ky) . ' (4.48)

Note that T is just an inverse Fourier transform.
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5. Two different methods for & general solution:

5.1 The solutlon In rectilinear coordinates

This method is based on the separation of variables in a rectilinear coordinate system,
and its final stages make use of partial Fourier transforms. The final result is presented in the
form of a partial Fourier transform, and is somewhat easier to convert into a full Fourier
transform than into the untransformed equivalent; for this reason, this method is recom-
mended over the other if one wishes to calculate the magnetic effects associated with a front, as
it interfaces more cleanly into the mathematics of section 2.2 than does the other method.

We start with the homogen=ous equation for any order,

V@) + £ ) i%gi’ww o .0

aﬁd assume that ¢ separates as
4:0?)‘- Vi) Hixy) . ' (5.2)

Some work then gives the equations

2y oy AV
S 4 () ) 2y - 0 (5.3)
and
VEIHGY) + K Hiky)=0 : (54 .

where k? and ¥ (z) are an eigenvalue and the associated eigenfunction of equation (5.3) under .

the boundary conditions

ﬂf_xtm_ LTI | 55

derived from the eriteria that for all orders 2:V¢ must be zero at the ocean bottom at zp and

the ocean surface at zg. For convenience of notation we label the nth eigenvalue and its associ-
ated functions k2, ¥, (z), and H, (x v). If orthogonality can be demonstrated for the V,, then
they may be used in the construction of the final solution; that the other requirement of com-
pleteness is satisfied is suggested by the observation that equation (5.1) under the boundary
conditions (5.5) -should have an infinite number of discrete solutions, which should form a
complete set if they are orthogonal to each other.

S L R NRVATYY > S VRN VRN WO VAT oty 3 Gk
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To demonstrate the mutual orthogonality of the ¥, (z), we first note that, according to
the definition of f(z) in section 2.1,

d : .
208w f @ oete) (5.6)
Letting a prime denote differentiation with respect to z, we ohserve that

L Vuaohs) = Vu'aols' + [Vnooly'+ Vuodhs” 6D

- -V,,,'d’oV,."i' V,,,Cl‘o (V'"'*'fyn')

= Vn'ooVs' + ki VuoroVy

by (5.3); given this, we then have that

L (oo’ = Va'oohs) = (7 = k) Vuoo¥s 58
:: . .
«@ and hence

- kn%) f UO(Z)Vm (Z)V,,(Z) dz = 0’0(2) {Vm (Z)Vn'(Z) - V,,,'(z)v,, (2)] Ixs = (5 9)
1

by (5.5). Therefore, we have that

g5 A B A AR NS P (5.10)

i

where 8, is in this case the Kronecker delts, and
b { . .
1,‘ -.r o.o(z)Vnz(z) & . ' (5!11)
8' .

We now turn to the nonhomogeneous equation,
view) + ) B = pez) (5.12)

If we dofine the partial Fourier transforms

o0 = [ dk, [ dk, Flkek,2) expli (kex+h,p)) (5.13)

Y
-- 5‘ \.H' ."n'. ) >, d)"i' f."}l’»" ‘.' 'P- ‘.\1. \.'u". (\‘.\
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p @) = [ ak, [ dk, Pl .k, 2) expli (kexthyp)) (5.14)

=~ Py Ly v

then equation (5.12) is transformed into

. 2 )
. %5+f(z)%—f—k’l-’-l° , (5.15)
Lol : |
et where
S k3w k3 4+ K} s - (5.16)
:c‘;;.‘: equation (5.15) may be solved through the construction and use of a Green’s function G such
:‘ﬁ{ that
N |
- 1 | - ,
F (ke Ky 2) -f Glz,z'k) Pk ky2') &' . C (517
g a . '
M)
B :21 ' The appropriate equation for G is
. _‘,ﬁq& ) . ,
rh:-,u 82 ' 9 ’ 2 ’ '
n ' -a-;iG(hz .k)_+f(z)~3-z-G(z.z K)=k2G (2" k) =8(z~z") (5.18)

following a e of reasoning similar to that used to demonstrate the mutual orthogonality of
the ¥, , we observe that '

35”; (V00G' = Vy'ogG s = V@) aolz) Gz 2'k) (k2= k) . (5.19)
= Vylz) oolz) 8(z—2")
where.a prime again denotes differentiation with respect to z, and hence
' 2
0= W= kD) [ 0o ¥y ()G ') di + oIV, &) (5.20)
]

which has the solution

1 v, )
(qu - kz) lll

Giz'k)= oW, @)+ Ci2'k) (5.21)

whera C is any function orthogonal to ¥, (z). On the basis of symmetry we guess that

(]
L}
4,
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1 Y (2}
G(z,z,k) B(k’ & I

PNV ACO I (5.22)

- and test this by substituting it back into equation (5.18) to get

$ ooz )V, (2)V, (2)

7 =3(z—2) (5.23)
Km0 A n

this is in fact the expression that one gets by using (5.10) to do a series expansion of § (z—z")
in the ¥, (z), indicating that (5.22) is the correct expression for G.

Accordingly, we have from (5,17) that
i Vo z)

F e iy 2) = Zoioor & ke rky) (5.24)
where
Qlak) = [ ooV PGy & . (5.29)

L

‘o
1

K& (k) is the full Fourier transform of ¢ (%), then we have that
*@® = [ Flok ) e & , ' (5.26)

the evaluation of which amounts to replacing the V, (z) in (5.24) with their Fourier transforms.

If we calculate ¢ (%) from (5.24) by a two-dimensional inverse Fourier transform. of F, we get
oV

W=% L8 gy, (520

] "

Kn(*o')-f dx'f dv‘fﬂ’ao(z')V )L, &'-xy=y) pix'y'2) , (5.28)

f dk, f dk, °""“(k "“‘” ) (5.29)

Lxy) = == —y

(2 (m)? ¢
"’M(knx»kny) ’

where

[ au T av Spliecto) (5.30)

M(x‘y) (2 )2 —o e 1- u’- Vz

A

N.o. X
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which reduces, witﬁ transformation to polar coordinates followed by integration over all angles,

to

MG&y) = 5= :[: T Jolke) (5.31)
where‘

plmxt4 y? . (5.32)
Making use of the identities

HV(=z) = = (=1)" H2(z) (5.33)

HO2) = - D" B @) : (5.34)

. where | |
| HO@) = J, @) +1 N, &) (5.35)
WD(z) = Jy @) =1 NG (5.36)

we find that

__I'. TT-’"F H§ (kp') dk = z_Z' Tf'iﬁ Jy (kp) dk A (5.37)
giving from equation (5.31)

Mxy) = 1‘7’- I -f:’-‘-,;,- HE (kp) dic (5.38)

this may be evaluated by contour integration, closing the contour in the lower half plane and
excluding the pole at the origin as a nonphysical mathematical artifact, to give

M(xy)=-1/4 Nop) . (5.39)

The calculation of ¢ (%) from F is somewhat more tedious than the calculation of @ (k),
involving two-dimensional convolution integrals as opposed to one-dimensional Fourier

transforms.
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$.2 The solution in cylindricai coordinates

This method is based on separation of variables in a cylindrical coordinate system, and
makes heavy use of Bessel transforms. For the final result, ¢ (%) is presented, in cylindrical
coordinates, as a series of Bessel functions. of the second kind. Disadvantages of this method
are that it is practically suited only for electrical conductivity perturbation distributions localized
about the origin, since an extended distribution requires more terms in the series expansion
than does a localized one, that large numbers of terms are necessary to adequately describe the
electric field close to the origin, since successively higher order terms in the expansion for ¢
tend to be progressively more concerned with the field in the neighborhood of the origin and
less with the field at great distances, and that using this method to calculate magnetic effects is
more involved than using the method discussed in the last section; balanced against this is the
availability of numerically swift algorithms for computing Bessel transforms (Anderson, 1979;
Chave, 1983). Accordingly, this method is at its best in computing the electric field associated
with a localized electrichl'conductivity. variation, particularly the field at large distances from this '
variation,

We start by ussuming the separation
$0o2)=V(i)HGS) , (5.40)

which, when substituted into the homogeneous equation (5.1) yields for V and H

LX) | gy L) - K V@)= (5.41)
and
ViHeO) + k*H(pg)=0 ; (5.42)

the boundary conditions on ¢, that 2-V¢=0 at the ocean bottom at z3 and the ocean surface at
zg, give that

ar z)'._" SELCTI (5.43)

serving to restrict solutions of (5.41) to discrete eigenvalues k! and associated eigenvalues
V,(z). We observe that (5.41) and (5.43) are identical in form to (5.3) and (5.5) respectively
in the previous scctidn, indicating that the -cigenfunction'orthogonality arguments made there
can be extended to the work of this section.
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;% We then define the transforms

Ny '

pY -

- 0682 =3 [k dk F, 2 k) ™ J, (kp) (5.44)

' ‘:p, m=0"0 !
ot

and

ol L plpfz) = f‘o{ k dk Py 2 k) e™ J, (kp) (5.45)
. ' M .

% N !

‘ and their inverse transforms

k4

2,50 : "

| " Fa(z k)= 'iL f pdp ? dod(p9,2) em g (kp) | (5.46)
. , T %0 0 ‘
and
Pz k) = L f .dp ? dop(p,0,2) e g, (kp) ,° (5.47) |
‘ Zr 0

where ¢ atid p are as in equation (5.12), Substituting expressions (5.44) and (5.45) into equa-
tion (5.12) and using the identity

o V3§ e, (kp) = = k2 €MV, (kp) ' (5.48)
| ! gives the equation
i asz("‘)’ff(z) L Fu ) = K Fu e k) = Py G ) ‘ (5.49)
)
i)
b N which is seen to have the same form s eguation (5.15) in the previous section.
W :
b ' Because of the observed similarities between the work of this section and that of sec-
Rt tion 4.1, we can immediately write
E: r,,,(z.k>-f Gza'k) Py 'k d2) - (5.50)
. where G is as given by equation (5.22), and hence
) )
l\
1 V,(z)
. ‘.::: FM (z k) ”_20 (kg kz) l,, Kmn (k) [ (5-51)
2
AN where
W
0 1
$ Ky (k) = }. o)V, @)P, 2 k) dz . (5.52)
f:l ' »
.‘«'.: i
;‘ {

------------
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?53 ‘ Substituting (5.51) back into the transform (5.44) then gives
.. dphz) = ):, i Vi 2) em Loy (p) (5.53)
v mm0 n=( n
.‘* .3
: :¥j where
3\ .
g .0 k
,,,.(o)-fkdk K"’"( ) 3 Jm (kp) . (5.54)

We can use the identities (5 33) through (5 36) in section 4.1 together with the observation
that

to demonstrate that

Kom (k)

L,.,,,(p)-'/szdk P

HP(kp) (5.56)

which may be evaluated by contour integration, closing the contour in the lower half plane and
detouring the section along the real axis below the origin, to get

Lon ©) == 1 Koun (ky) Ny (k) . ' (5.57)

Note that each of the X, need be evaluated for only a single value of k in these calculations.

Al
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